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Abstract. The bias in climate model projections of heatwaves and surface temperature trends is primarily observed at re-

gional spatial scales. However, demographic projections in various SSPs (Shared Socioeconomic Pathways) are typically con-

strained to human-defined country or provincial levels rather than natural climatological regions, underscoring the importance

of county-level analysis for accurate local policy-making. This study uses county-level population projections to examine de-

mographic changes by age, sex, and race in the US affected by biases in heatwaves and surface temperature trends in CMIP65

climate models. Most CMIP6 models tend to underestimate persistent heatwaves in northeastern North America, and surface

temperature trends are underestimated in the western United States. Comparing more vulnerable regions to less vulnerable

ones in terms of persistent heatwaves and surface temperature trends in summer, we find that the child population and white

population exhibit distinct features in most comparisons. The Hispanic population and sex ratios also show differences in some

cases, while the Black population, elderly population, and other racial groups appear less sensitive to these vulnerabilities. The10

population affected by climate model biases on heatwaves and surface temperature trends is highly sensitive to various uncer-

tainties—the internal variability can adjust the total vulnerable population by a factor of 2 to 10. In comparison, uncertainties

due to different models are relatively small. Our results suggest the need for detailed climate adaptation storylines that indicate

the relative likelihood and magnitude of populations affected by climate model biases on extreme heat-related variables.

1 Introduction15

Heatwaves, characterized by prolonged periods of abnormally high surface temperatures, have been increasing in both fre-

quency and intensity due to climate change (Perkins et al., 2012). These extreme events are linked to a variety of disasters,

including impacts on agriculture, wildfires, energy demand, ecosystems, and public health (Brás et al., 2021; Shaposhnikov

et al., 2014; Larcom et al., 2019; Yin et al., 2023; Kovats and Kristie, 2006). Vulnerable demographic groups are particularly

at risk, as heatwaves exacerbate existing health conditions and significantly increase mortality rates among populations less20

capable of adapting to extreme temperatures (Chambers, 2020; Kravchenko et al., 2013). Given the severity of these impacts,

there is an urgent need to estimate the potential consequences of heatwaves on human populations.

However, accurately simulating heatwaves in climate models presents a significant challenge due to inherent biases (Domeisen

et al., 2023). These biases are often related to the models’ difficulties in accurately representing atmospheric large-scale circu-

lations, such as blocking events, which can lead to underestimating the persistence of heatwaves (Brunner et al., 2018; Masato25

et al., 2013). Furthermore, the poor simulation of interactions between different components of the Earth system, like air-ocean

and air-land interactions, further complicates heatwave predictions (Mueller and Seneviratne, 2012; Wills et al., 2024). Beyond
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heatwaves, climate models also struggle with simulating surface temperature trends at regional scales, despite their success in

capturing global mean temperature trends (Davy and Esau, 2014; Wang et al., 2023). Fortunately, model biases tend to remain

relatively constant under global warming, allowing for more reliable projections after bias correction (Krinner and Flanner,30

2018).

This research employs the storyline method alongside a simple bias correction to improve the estimation of heatwave impacts

and summer surface temperature trends (Shepherd et al., 2018). The uncertainties addressed in this study primarily stem from

two sources: model bias and internal variability, as the scenario uncertainty is embedded within different SSPs data already. By

quantifying these uncertainties, the study aims to provide a more accurate assessment of the demographic groups most affected35

by heatwaves and temperature trends, considering model biases.

A novel aspect of this research is the use of population data calculated by Hauer (2019) at the county level under different

Shared Socioeconomic Pathways (SSPs). This granular approach offers greater flexibility in assessing the impacts of natural

systems, which do not adhere to national or provincial boundaries. Although this population data has been utilized in coastal

vulnerability studies, there is currently no research at the county level focusing on the demographic impacts of heatwaves.40

This study aims to explore how different demographic groups—defined by age, sex, race, and geographic location—are

affected by heatwaves and long-term trends in summer temperatures. Understanding the uncertainties surrounding the impacts

of these extreme weather events is crucial for developing targeted public health interventions and informing policy decisions.

By analyzing historical data on heatwave occurrences and summer temperature trends, this research seeks to identify the most

at-risk demographic groups and examine how these risks have evolved over time.45

2 Data and methods

2.1 Climate data

In this research, we analyzed ERA5 reanalysis - an approximation of the observed state of the atmosphere - and historical

simulations from five CMIP6 models, as well as Scenario Model Intercomparison Project (ScenarioMIP) projections (SSP1-

2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5), with resolutions interpolated to 1°x1° latitude-longitude (Hersbach et al., 2020; Eyring50

et al., 2016; O’Neill et al., 2016). While this resolution is relatively coarse, it is sufficient for capturing large-scale circula-

tion patterns. The five CMIP6 models used in this study are the Australian Community Climate and Earth System Simulator

coupled model (ACCESS-CM2), the Centre National de Recherches Météorologiques Earth System Model (CNRM-ESM2-1),

The Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-g3), the Korea Meteorological

Administration Advanced Community Earth-System model (KACE), and the Meteorological Research Institute Earth System55

Model Version 2.0 (MRI-ESM2.0). Each selected model includes three ensemble members in historical experiments and in

each SSP projection. The original surface temperature data was downloaded through acccmip6 software.

ACCESS-CM2 includes the UK Met Office (UKMO) Unified Model (UM) atmospheric model (v10.6) in the GA7.1 con-

figuration, with a resolution of N96 (1.875°×1.25°), 85 vertical levels; the Community Atmosphere Biosphere Land Exchange

land surface model (CABLE2.5) developed by Australian researchers; the Geophysical Fluid Dynamics Laboratory (GFDL)60
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Modular Ocean Model (MOM5) at 1° resolution; the Los Alamos National Lab Sea Ice Model (LANL CICE5.1) in the UKMO

configuration; and the Ocean Atmosphere Sea Ice Soil Model Coupling Toolkit (OASIS-MCT) maintained by the Centre Eu-

ropéen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS) and the Centre National de la Recherche

Scientifique (CNRS) in France (Bi et al., 2020; Walters et al., 2019; Griffies et al., 2012; Hunke et al., 2010; Craig et al., 2017).

CNRM-ESM2-1 is the second-generation Earth system model developed by the CNRM/CERFACS modeling group. It65

includes ARPEGE-Climat v6.3 for the atmosphere, developed at CNRM; Nucleus for European Modelling of the Ocean

(NEMO), developed by the NEMO consortium, which includes Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC),

CNRS, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Mercator-ocean, Met-Office, and National Oceanography Cen-

tre (NOC); Global Experimental Leads and Sea Ice for Atmosphere and Ocean (GELATO) for sea ice, developed at CNRM

and embedded in NEMO for coupled simulations or in Surface Externalisée (SURFEX) v8.0 for SST-prescribed simulations;70

Interaction Soil-Biosphere-Atmosphere CNRM version of Total Runoff Integrating Pathways (ISBA-CTRIP) for land surface

processes and river routing; FLake for lake thermal processes, developed at IGB-Berlin (Leibniz-Institute of Freshwater Ecol-

ogy and Inland Fisheries) and revised at CNRM; PISCESv2-gas (Pelagic Interactions Scheme for Carbon and Ecosystem

Studies volume 2) for marine biogeochemistry; ISBA-CC (Interaction Soil Biosphere Atmosphere Carbon Cycle) for conti-

nental biogeochemistry; TACTIC for aerosols; and REPROBUS for chemistry. Components without specific source attribution75

are developed by CNRM (Séférian et al., 2019; Madec et al., 2017; Mélia, 2002; Voldoire et al., 2017).

FGOALS-g3 includes Version 3 of the Grid-Point Atmospheric Model of LASG-IAP (GAMIL3) for the atmosphere, Version

3 of the LASG-IAP Climate System Ocean Model (LICOM3) for the ocean, Version 4 of the LANL CICE for sea ice, and

the CAS-Land Surface Model (CAS-LSM) for land surface processes, based on the Community Land Model Version 4.5

(CLM4.5). The model also incorporates two couplers: CPL7, developed at the National Center for Atmospheric Research80

(NCAR), and C-Coupler2 (Community Coupler Version 2), developed at Tsinghua University. Components without source

attribution are developed by LAST-IAP (Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid

Dynamics - Institute of Atmospheric Physics) (Li et al., 2020).

KACE is composed of the UM as the atmospheric component, MOM from NOAA GFDL as the ocean component, LANL

CICE as the sea ice component, Joint UK Land Environment Simulator (JULES) as the land component, and the OASIS3-MCT85

coupler (Lee et al., 2020).

MRI-ESM2.0 consists of four major component models: an atmospheric general circulation model (AGCM) MRI-AGCM3.5,

an aerosol model called Model of Aerosol Species IN the Global Atmosphere (MASINGAR), an atmospheric chemistry model

MRI Chemistry Climate Model version 2.1 (MRI-CCM2.1), and an ocean–sea-ice general circulation model MRI Community

Ocean Model version 4 (MRI COMv4) (Yukimoto et al., 2019).90

To ensure comparability with ERA5 data from 1940 and historical experiments in CMIP6, the historical period for this

research is defined as 1940–2014, and ScenarioMIP time period is 2015-2100. In this study, heatwaves are identified as periods

when temperatures exceed the 95th percentile of all summer (June-July-August) days, after applying a linear detrending, for at

least three consecutive days. Additionally, the summer seasonal temperature trend per year is calculated.
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2.2 Population data and methods95

In the U.S., we use county-level population projection data from Hauer (2019). This dataset provides projections by age, sex,

and race in five-year intervals for all U.S. counties from 2020 to 2100. The projections are calibrated using historic U.S.

census data from 1990 to 2015. Population projections are generated using cohort-change differences (CCDs) through ARIMA

models for eighteen five-year age groups (0–85+), two sex groups (Male and Female), and four race groups (White Non-

Hispanic, Black Non-Hispanic, Other Non-Hispanic, and Hispanic). These projections are further controlled by the Shared100

Socioeconomic Pathways (SSPs).

Because sociological county definitions do not align with natural latitude-longitude grids, we interpolate the geographical

centroids of the counties to correspond with the climatological data’s latitude and longitude grid points. We calculate the

distance between the centroids of the counties and the four surrounding lat-lon grid points. Counties closest to a grid point

within the threshold are considered within that threshold, and vice versa.105

For the demographic analysis, we employ the Welch Two Sample t-test (Welch, 1947). This test is particularly effective

in situations where the variances of two populations are unequal, making it suitable for small sample sizes or samples with

different variances. The test involves calculating the means and variances of the two samples, then using these results to

compute the degrees of freedom and the t-statistic.

3 Results110

3.1 Climate model bias patterns

We first examined the extent to which persistent heatwave days can be simulated by historical climate models compared to

ERA5 reanalysis. Given that the number of days exceeding the 95th percentile in summer from 1940 to 2014 is constant,

the discrepancies between climate model simulations and reanalysis reflect differences in the persistence of these extreme

heatwaves. In Figure 1, lighter colors indicate fewer heatwave days simulated by the climate models relative to reanalysis/ob-115

servation. The results across all climate models are similar: 1) significant biases in heatwave days are observed in northeastern

North America and central Asia, 2) heatwaves over land are poorly captured, with simulated heatwave days being at least 40%

fewer than in reanalysis/observation, and 3) heatwaves over the ocean are generally well captured, except in FGOALS-g3.

Focusing on the US, the lighter color in northeastern regions suggests that people living there in the future may experience

more frequent and unexpected heatwaves.120

We then examined the uncertainties associated with the bias in persistent heatwave days across climate models. Figure 2a

displays the standard deviation of persistent heatwave day biases for each climate model mean, highlighting uncertainties

stemming from various model biases. Figure 2b-f show the standard deviations among ensembles of each climate model,

reflecting natural variability in the climate system. The standard deviations in each climate model are approximately 5% in

North America, indicating that the differences observed between climate models and ERA5 reanalysis in Figure 1 are more125

than 2 standard deviations from the heatwave day spectrum, suggesting a solid model bias. Notably, the standard deviation
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Figure 1. The ratio of simulated persistent heatwave days in climate models relative to ERA5 reanalysis. (a) Average of five models’ mean,

(b) average of ACCESS-CM2 ensembles, (c) average of CNRM-ESM2-1 ensembles, (d) average of FGOALS-g3 ensembles, (e) average of

KACE1-0-G ensembles, and (f) average of MRI-ESM2-1 ensembles.

among different climate models is small over land in North America but quite large along the coast. In North America, the

standard deviation among different climate models is mostly under 4% over land, except for two regions in the western and

midwestern US. Meanwhile, the standard deviations within each climate model ensemble are around 5%, indicating that natural

variability may contribute to greater uncertainty than model biases.130

In Figure 3, model bias in surface temperature trends differs from the bias observed in persistent heatwave days. While

climate models generally capture global mean temperature trends accurately, these trends vary across different Shared Socioe-

conomic Pathways (SSPs). To analyze regional temperature trends, we subtract the global mean trend from surface temperature

trends at each grid point and compare these regional trends to ERA5 data. Figure 3 illustrates the differences between climate

model regional trends and ERA5 regional trends. Common features across all models include: 1) A significant underestimation135

of land surface temperature in the Arctic region, indicating an Arctic Amplification signal; 2) Underestimation of surface tem-

perature trends in the western US (particularly over the Rockies), the Iranian Plateau, and the Tibetan Plateau, suggesting that

the models struggle to represent topographic effects accurately. Consequently, while the west US may not experience the per-

sistent heatwave day bias, residents could face higher summer average temperatures than predicted by climate models. People

in different regions in the US may be influenced by different kinds of climate model biases.140

Finally, we examined the standard deviations of surface temperature trends among different climate models and their en-

sembles, as shown in Figure 4. Figure 4a reveals that the standard deviation is less than 0.01 K/year, indicating that 2 standard

deviations among different models are still smaller than the ’model bias’ over the Rockies, suggesting discrepancies among

models. However, the standard deviations within climate model ensembles exceed 0.04 K/year, meaning that 2 standard devia-
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Figure 2. The ratio of simulated persistent heatwave days in climate models relative to ERA5 reanalysis. (a) Standard deviation of five mod-

els’ mean, (b) standard deviation of ACCESS-CM2 ensembles, (c) standard deviation of CNRM-ESM2-1 ensembles, (d) standard deviation

of FGOALS-g3 ensembles, (e) standard deviation of KACE1-0-G ensembles, and (f) standard deviation of MRI-ESM2-1 ensembles.

Figure 3. Same as Figure 1, except for surface temperature trends rather than persistent heatwave days.

tions can surpass the so-called model bias. This implies that the observed ’model bias’ may be due to natural variability alone,145

meaning that the differences shown in Figure 3 could be attributed to this variability. This does not necessarily indicate that

the models are incorrect; rather, even if the models are accurate, we would still face uncertainty about future conditions. While

residents in the west US might not be directly affected by model bias, all climate models face challenges in predicting future
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Figure 4. Same as Figure 12, except for surface temperature trends rather than persistent heatwave days.

conditions due to this variability. This underscores the importance of employing a storyline approach to prepare for all possible

scenarios.150

Since the persistent heatwave days bias and surface temperature trends are calculated over a long time period, the pattern

of climate model bias remains consistent over the years. We also examined these biases across different SSPs and found no

significant differences from the biases observed in historical simulations (about 10% compared with the model discrepancies),

confirming our initial hypothesis. Given that our current metrics are based on relative thresholds, the different SSPs do not

impact the final results. Therefore, we will focus on biases from historical simulations in this report to maintain simplicity.155

However, it’s important to note that when absolute values, such as absolute heatwave temperature, are considered, different

SSPs will play a crucial role.

3.2 Population maps associated with climate model bias

After assessing the climate model biases and the effects of natural variability, we next connect these findings with population

maps to identify the counties affected by these biases and variabilities.160

We first examine the population distribution for 2020 and 2100 in Figures 5 and 6 to understand demographic trends. Since

population projections begin from 2015, differences among various SSPs are minimal. Figure 5 shows that the population is

concentrated along the east and west coasts, with some counties in southern California and Florida having the largest popula-

tions. In contrast, the Midwest and western US have relatively few counties with large populations

The situation changes significantly by 2100, with a marked increase in urbanization over the next 80 years. Most of the165

population becomes concentrated in a limited number of counties, with a noticeable trend of faster population growth in the

southern regions (California, Texas, and Florida) compared to the northeast US and the Great Lakes area. It is striking to observe
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Figure 5. The population projection in each county in 2020 in continental US. The population projection starts from 2015.

that, by 2100, some counties could have populations in the millions, compared to only hundreds of thousands in 2020—a

tenfold increase! Besides the overall demographic shifts, it’s interesting to note the variations in population distribution across

different SSPs. In SSP3, which assumes high regional rivalry, the population in the western US mountain regions is significantly170

lower than in the other SSPs. Conversely, SSP1, SSP2, and SSP5 all indicate that, regardless of the socioeconomic development

path, the population will be concentrated in major cities.

An interesting result from comparing the demographic features across different SSPs is that the population characteristics

are not significantly different among them. In the analysis below, we focus on SSP5, as it has the largest population and clearly

illustrates these features. While there are instances where different SSPs exhibit distinct features, these will be discussed in the175

next subsection on population characteristics.

First, we focus on the counties affected by the persistent heatwave days bias. We established a series of thresholds based

on the bias value in the continental US region, roughly defined as 25-50N, 125-70W over land. This definition might have

some inaccuracies, especially around the Great Lakes. We initially set thresholds at 90%, 75%, and 50% to examine the

demographic distributions. However, a challenge arose with the first figure in this series: since the persistent heatwave days180

bias is concentrated in the northeastern US, using the 90% threshold resulted in no US counties being selected (indicating that

Canadians might be more affected by this model bias!). As a result, we adjusted the thresholds to 10% and 25% in place of

90% and 75% for the persistent heatwave days analysis. These adjusted thresholds allow for a more meaningful comparison

with the counties affected by surface temperature trends, enabling us to identify areas where the distributions do not overlap.
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Figure 6. Same as Figure 5, except for 2100 projection.

Starting from Figure 7, we adjusted the legend to ensure that white represents regions not selected by the thresholds, while185

light pink indicates areas with few people living in the selected counties. Moving from left to right, we see that with the 10%

threshold, only a few counties in the southern and southwestern US are not selected; with the 25% threshold, the selected

area shrinks northward and eastward, with only some counties in the northwestern US remaining selected; and with the 50%

threshold, the selection is limited to the northeastern US and areas around the Great Lakes. The number of counties selected

ranges from 2,831 to 695. The standard deviation, reflecting the role of internal variability, can be significant, particularly when190

one standard deviation is removed. Given the common definition of natural variability in climate science—typically 2 standard

deviations—the population affected by this variability could vary by a factor of 2 to 10 (not shown). The number of counties

selected with 1 standard deviation ranges from 1,066 to 2,399.

Beyond the regions severely affected by model bias in persistent heatwave days, it’s crucial to identify where uncertainties

are substantial for informed policy-making. Figure 8 highlights the regions most impacted by model uncertainties and natural195

variability, using thresholds ranging from 90% to 50%. The first row illustrates the impact of model uncertainties, while the

second row shows the influence of natural variability. Model uncertainties are concentrated in southern Florida, parts of the

Rockies, and the Midwest. As the threshold is lowered to 75%, the affected areas expand, including the northern boundary of

the US, the Great Lakes, the southeastern US, and southern California. At the 50% threshold, most of the US is affected, except

for the northeastern US and parts of Arizona, among others. Natural variability impacts start in similar regions—Florida and200

the western US—but cover a much larger area, including parts of the southern US. As the threshold lowers, the affected regions
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Figure 7. Counties and their populations affected by different thresholds of persistent heatwave days bias: (a) exceeding 10% of the persistent

heatwave days bias within the continental US (25-50N, 125-70W over land), (b) exceeding 25%, (c) exceeding 50%, (d) exceeding 25% with

1 standard deviation added, and (e) exceeding 25% with 1 standard deviation removed.

expand further, eventually covering most of the US, including parts of the northeastern US. It’s important to note that model

uncertainties and natural variability overlap in regions like Florida and the western US, which is not entirely surprising given

that model bias can be linked to natural variability, especially decadal variabilities. However, this overlap raises additional

concerns for local policy-making and underscores the importance of climate adaptation strategies. The county number affected205

by the large uncertainties ranges from 291 to 2863 in Figure 8.

The surface temperature trend ’bias’, or the strong effect of natural variability around the Rockies, is much more regionally

confined. In Figure 9, the regions strongly affected start in the western US, excluding the southern part, and gradually expand

southward and eastward, reaching areas with high population densities like southern California and the northeastern US. The

population’s sensitivity to the standard deviation is notable—not because of the spatial range covered by the standard deviation,210

but due to the high population density in these affected counties. The county number ranges from 203 to 979 in Figure 9.

Unsurprisingly, the uncertainties due to climate models and natural variability overlap more in Figure 10, as model uncer-

tainties already reflect natural variability. Compared to Figure 9, it’s important to note that even if some counties in southern

California and Texas aren’t strongly affected by the bias, natural variability can still play a significant role. These uncertainties

extend to most counties when using the 50% threshold. The number of counties affected ranges from 761 to 2,633 in Figure 9,215

with the variation largely due to the differing county densities between the western and eastern US.
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Figure 8. Counties and their populations affected by different thresholds of persistent heatwave days standard deviation: (a) exceeding 90%

of the persistent heatwave days bias standard deviation among different climate model means within the continental US (25-50N, 125-70W

over land), (b) exceeding 75%, (c) exceeding 50%, (d) exceeding 90% of the mean persistent heatwave days bias standard deviation within

each climate model in the continental US, (e) exceeding 75%, and (f) exceeding 50%.

3.3 Population feature comparison

We then want to examine whether the populations in more vulnerable regions—whether to persistent heatwave days or surface

temperature trends—differ in characteristics from those in less vulnerable regions. Given the relatively large populations within

the 90% and 10% thresholds, we did not include a comparison with the total population, as it may overlap with the 90%220

threshold population. For the next analysis, we used the 75% threshold (except for the 25% threshold for the mean of persistent

heatwave days) and continued to use SSP5 as the example. In the following boxplots, the light peach box indicates the selected

regions and the orange box indicates the lefted regions. The box represents the 25th to 75th percentile distribution, with the

red line indicating the median value. The minimum and maximum values correspond to 25% minus 1.5 times the Interquartile

Range (IQR, 25th to 75th percentile) or 75% plus 1.5 times the IQR.225

Figure 11 compares population characteristics between regions where persistent heatwave days exceed the 25th percentile

threshold and the remaining regions (shown in the first and third pairs of columns in each subplot), and between regions where

surface temperature trends exceed the 75th percentile threshold and the remaining regions (shown in the second and fourth

pairs of columns in each subplot). According to the Welch T-test, only in the comparison of the elderly population for surface
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Figure 9. Same as Figure 7, except for surface temperature trend mean difference rather than persistent heatwave days mean difference.

Figure 10. Same as Figure 8, except for surface temperature trend mean standard deviation rather than persistent heatwave days standard

deviation.

temperature trends in 2100 do the counties above and below the threshold show no significant difference (p-value over 0.7).230
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Figure 11. Comparison of population characteristics between regions where persistent heatwave days exceed the 25th percentile threshold

and the remaining regions, as well as between regions where surface temperature trends exceed the 75th percentile threshold and the remain-

ing regions. Panel (a) compares the male population to the total population ratio for persistent heatwave days in 2020, surface temperature

trends in 2020, persistent heatwave days in 2100, and surface temperature trends in 2100. Panel (b) presents the same comparison for the

female population, while panel (c) focuses on the child population, and panel (d) on the elderly population.

For the male, female, and child populations in regions affected by persistent heatwave days in 2100, slight differences were

observed (p-values between 0.05 and 0.1).

Notably, the ratios of the subset populations are all different in 2020. Regions with heatwave days bias (northeast US) have

relatively fewer males and more females, whereas in the western US, where surface temperature trends are prominent, the

opposite pattern is observed. This could be related to the industrial structures in different US regions. Interestingly, this sex235

ratio distribution is expected to reverse by 2100 if immigration is not considered. It is questionable why the male ratio is so far

from 0.5 in 2020, prompting further analysis to verify the accuracy of these results.

For both the child and elderly populations, the child population is smaller, and the elderly population is larger in the selected

regions compared to the remaining regions in 2020. However, this trend is less pronounced in 2100.
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Figure 12, similar to Figure 11, illustrates the comparisons across the four racial groups. A distinct feature is the substantial240

reduction in the White population across the US, accompanied by an increase in the Black, Hispanic, and other populations,

with the Hispanic population experiencing the most significant growth. This trend is widespread and not necessarily linked

to heatwaves or surface temperature trends, as the box plots for both groups (above and below the thresholds) show similar

patterns.

However, regions above the model bias thresholds can differ notably from those below, especially for the White and His-245

panic populations. A consistent feature observed in both 2020 and 2100 is a higher White population and a lower Hispanic

population in more vulnerable regions, a difference confirmed as significant by Welch’s t-test, though this disparity diminishes

considerably by 2100. Additionally, there is a significantly lower Black population in the vulnerable regions, except for those

impacted by heatwave day bias in 2100. The "other" population category is less affected by trends in bias, which mainly re-

flects regional differences between the western US and other areas. However, fewer people of other races are found in regions250

affected by heatwave day bias (northeast US) in 2020, a trend that reverses by 2100, with more people of other races residing

in these vulnerable regions.

In comparing regions where the standard deviations of persistent heatwave days and surface temperature trends among

different climate model means exceed the 75th percentile threshold (Figure 13), issues with the sex ratio persist. Notably, the

sex ratios for heatwave days and summer temperature trends in 2100 still pass Welch’s t-test. The sex ratio in 2020 (with fewer255

males and more females in regions over the threshold, such as South Florida and certain mountainous areas) reverses in 2100.

For child and elderly populations, the difference between selected and non-selected regions in 2100 for both heatwave days

bias and surface temperature trend bias is significant: there are more children and fewer elderly in the selected regions, which

aligns with the observed population growth in the southern and western U.S. in Figure 6. However, the differences in 2020

are less pronounced, with some not being statistically significant, emphasizing the importance of monitoring the age and sex260

population in the future.

In Figure 14, the racial population characteristics across the country are examined. For White and Black populations, signifi-

cant differences between regions with large and small model uncertainties are observed in 2020, but these differences diminish

by 2100. Specifically, in 2020, regions with high model uncertainties have a higher proportion of White and a lower proportion

of Black populations, but this disparity is reduced in 2100. In contrast, the Hispanic population, which was relatively low in265

2020, increases significantly by 2100. Despite this overall increase, regions with high model uncertainties still show a relatively

lower Hispanic population. For other racial groups, no significant differences are noted.

Figure 15 compares regions where the average of each climate model’s standard deviations for persistent heatwave days

and surface temperature trends exceeds the 75th percentile threshold. Aside from a potential bias in sex ratios in 2020, there

are no significant differences in sex ratios between regions with high and low uncertainties for persistent heatwave days,270

indicating similar impacts from large or small natural variability. However, significant differences are observed in sex ratios for

regions with high or low uncertainties in surface temperature trends, particularly in the West US. In the West US, where high

uncertainties are located, there is a higher male-to-female ratio compared to other regions.
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Figure 12. The same as Figure 11, except for (a) the White population, (b) the Black population, (c) the Hispanic population and (d) the

other races population.

For child populations, regions in the West US with high uncertainties consistently show a larger ratio of children and a

smaller ratio of elderly individuals compared to other regions. However, the difference in elderly population ratios for surface275

temperature trends in 2020 is not strongly significant from other regions (p-value around 0.07).

Finally, in Figure 16, we analyze racial population features in regions where the average of each climate model’s standard

deviations for persistent heatwave days and surface temperature trends exceeds the 75th percentile threshold. White and His-

panic populations consistently show significant differences between regions with high and low uncertainties. In regions with

high uncertainties, particularly in the West US, the Hispanic population is consistently higher in both 2020 and 2100, whereas280

the White population is higher in 2020 but lower in 2100. For the Black population, there is no significant difference in regions

affected by natural variability in heatwave days, but a significant difference is observed in regions affected by natural variability

in surface temperature trends, such as the West US. Similarly, other races show a higher population presence in the West US.
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Figure 13. The same as Figure 11, but focusing on regions where the standard deviations of persistent heatwave days and surface temperature

trends among different climate model means exceed the 75th percentile threshold.

4 Summary and Discussion

In this research, we analyzed two types of surface temperature metric biases in climate models and examined how vulnerable285

population groups might be impacted by these biases. We found that the selected CMIP6 climate models exhibit similar

behaviors: a strong bias in persistent heatwave days in the northeastern U.S. and a bias in surface temperature trends in the

western U.S. Both biases are influenced more by natural variability than by uncertainties among different climate models.

The bias in persistent heatwaves is consistent and pronounced, while the bias in surface temperature trends is more strongly

controlled by natural variabilities.290

Overall, the U.S. population shares some common trends: 1) continued urbanization, 2) an increasing ratio of non-White

populations, particularly Hispanic, and 3) a growing proportion of the elderly population. The uncertainties from climate

model analyses contribute to significant uncertainties in the affected populations as well, due to large variations in the spatial

range corresponding to 1 or 2 standard deviations from the thresholds, as well as the impact of counties with extremely high

populations and ongoing urbanization.295
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Figure 14. The same as Figure 12, but focusing on regions where the standard deviations of persistent heatwave days and surface temperature

trends among different climate model means exceed the 75th percentile threshold.

In addition to these general trends, some key observations include: 1) there are more female populations on the East Coast

and more male populations on the West Coast, possibly linked to industrial structures. Consequently, regions with surface

temperature trends bias tend to have a higher male population, while those suffering from persistent heatwave days tend to

have more females. 2) In most cases, regions with a higher elderly population have fewer children, and vice versa, suggesting

that policymakers should prepare for more vulnerable populations across different scenarios. 3) For racial demographics, the300

differences between selected and non-selected regions are relatively small across all racial groups. A significant difference

exists between 2020 and 2100, with a notable trend of more White populations in regions affected by both types of model

biases. However, by 2100, regions experiencing large natural variability and both types of model biases will see an increase in

the Hispanic population and a decrease in the White population.

We have also examined the phase preference of quasi-stationary Rossby waves in the upper troposphere (Fei and White,305

2023). These long-lasting atmospheric circulation patterns play a significant role in surface heatwave occurrences. The phase

preference feature of quasi-stationary Rossby waves, identified through odds ratios, is associated with heatwave location pref-
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Figure 15. The same as Figure 11, but focusing on regions where the average of each climate model’s standard deviations for persistent

heatwave days and surface temperature trends exceeds the 75th percentile threshold.

erences in the western US. However, this region differs from the northeastern US, where the most significant heatwave days

bias from climate models is observed, indicating a less direct relevance to the current research target. Furthermore, the phase

preference feature is based on absolute values rather than relative thresholds, suggesting that future analyses should focus on310

the impact of absolute high temperatures on human populations.

4.1 shortcoming and next steps

There are several shortcomings and ongoing next steps for this research. One clear limitation is the need to investigate the sex

ratio at the start of the population projection. Additionally, selecting grid points based on the continental US range is crucial to

avoid having zero counties for the 90th percentile threshold of heatwave days mean. Furthermore, the fact that the U.S. is an315

immigration country has not been accounted for in the population projection dataset, which introduces significant limitations

to the projection (Black et al., 2011).
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Figure 16. The same as Figure 12, but focusing on regions where the average of each climate model’s standard deviations for persistent

heatwave days and surface temperature trends exceeds the 75th percentile threshold.

Despite these shortcomings, there are exciting research directions ahead. For instance, we have begun projecting the Cana-

dian population to 2100 at the subdivision level, considering Canada’s vast territory. This includes examining populations with

different mother tongues, which may indicate indigenous groups speaking less common languages. However, due to the lack320

of household population data at the subdivision level from the Canadian Census, identifying group quarters with normal family

structures is challenging. Consequently, population projections may become less accurate after a few steps.

Another promising avenue is to consider absolute temperature values, particularly in SSP5 scenarios and temperatures ex-

ceeding 35°C. Incorporating relative humidity is also important for assessing human comfort (Heo et al., 2019; Raymond

et al., 2020). Additionally, exploring demographic differences between 2020 and 2100 could reveal whether changes are due to325

climate model biases or population projections. Lastly, we plan to complete the analysis for the remaining six climate models

using the same methods.
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