
 

29th May 2025   Vicky Lucas
  

 

Hot Topics: 

Machine Learning for Weather Forecasting & 

Heatwave Prediction to Medium Range & Beyond 

 

A Guide for Meteorologists – Burn After Reading 

 

 

 

 

Why read this report? 

Written for operational or research meteorologists everywhere, this is a guide on how machine 

learning is being used in weather prediction, with a focus on the challenge of extreme heat.  Cutting 

through the hype – it’s an approachable review on what is happening and what to watch.  If you are 

wondering where things are heading, keep reading – some of the fieriest issues are still unresolved. 
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1. Degrees of change: introduction 

Machine learning (ML) is reshaping meteorological modelling, offering new ways to emulate, 

improve or replace a range of weather and climate modelling (Chantry et al., 2021).  In just a few 

years techniques have moved from focused applications, such as radar nowcasting, to full global 

models using machine learning for weather prediction (MLWP) that rival, and in some cases 

outperform, traditional numerical weather prediction (NWP) systems.  The shift is not just in who 

builds these models, often technology companies, but in how forecasts are produced.  MLWP does 

not solve physical equations, but learns patterns in data, based on techniques used in other machine 

learning applications such as recommendation engines, image generation and Large Language 

Models (LLMs). 

Many MLWP systems are trained on historical and constructed weather datasets, very often 

reanalysis – and especially ERA5 (Climate Data Store).  MLWP model training requires significant 

data, time and energy, but once trained, operational ML models can produce forecasts in seconds or 

minutes on minimal hardware compared with NWP supercomputers.  This speed opens up 

possibilities for larger ensembles, rapid updates, and hybrid workflows.   

Something to bear in mind is that this is a domain in flux, no architecture clearly prevails.  Groups are 

experimenting with configurations, progressively leapfrogging their own and others’ achievements.  

While many MLWP models appear in peer-reviewed journals, some remain as pre-prints – including 

references in this report (e.g., arXiv), and some make open-source versions available.   

As developments continue, the plethora of global general MLWP models can be divided by their 

training regimes (Shi et al., 2025 – arXiv): 

• Deterministic predictive learning, as used in FourCastNet, uses supervised training – labelled 

data where each input comes with a corresponding output – a learnt relationship.  These 

models minimise forecast error, are fast to run, but accumulate errors over longer lead times. 

• Probabilistic generative modelling, such as GenCast, uses diffusion to generate ensemble 

forecasts, offering uncertainty modelling without explicit perturbations of NWP ensembles.  

Generative models learn the distribution of the training data, then generates new samples. 

• Foundation models, such as Aurora, pre-trained on extremely large and diverse datasets to 

fulfill a broad range of tasks, transferring learning to other datasets either with fine-tuning 

on new data or prompting e.g., from weather to air quality modelling. 

This broad training delineation is a framework to understand ML in meteorology.  In some instances, 

deep learning, a subset of ML, would be a more accurate term, but ML is used here for simplicity.  A 

glossary of ML terms is included at the end of this report – when new terms are used a hyperlink to 

the glossary is provided. 

This report follows how MLWP is shifting from research to real-world use.  It starts by tracing the 

recent proliferation of global ML models, introducing some of the notable participants and a little on 

how they work.  Next, is an exploration on what is happening in forecasting heatwaves and extending 

the forecasting window beyond the medium range and into sub-seasonal to seasonal (S2S).  The final 

sections look ahead to where the field is going – concluding with unresolved tensions and challenges.  

 

  

https://doi.org/10.1098/rsta.2020.0083
https://en.wikipedia.org/wiki/Numerical_weather_prediction
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://arxiv.org/pdf/2501.06907
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2. Mercury rising: chronology of machine learning weather models 

The rapid development of general global machine learning weather models reflects technology 

company efforts in meteorological modelling and capitalising on techniques, such as used in Large 

Language Models e.g., ChatGPT (transformers) or image generation (diffusion).  Since 2022 MLWP 

models have made headlines on outperforming respected operational NWP.  These ML models were 

optimised for minimising average errors, but later models have switched to generative modelling and 

two types of this approach, GenCast and Aurora, are discussed in more detail later.   

A timeline of general global ML models 2022 to 2025 is shown in Figure 1, and a glossary of ML terms 

used is provided at the end of this report.   

FourCastNet (Pathak et al., 2022 – arXiv) was the 

first general-purpose deterministic MLWP model 

based on a neural network that rivaled the accuracy 

of operational NWP.  FourCastNet was trained on 

10TB of data, emulating atmospheric dynamics 

learnt from ERA5 reanalysis. It can be run globally in 

seconds at 0.25° resolution.  The breakthrough was 

twofold.  Firstly, using the Fourier Neural Operator 

approach (Li et al., 2021 – arXiv) which learns 

mapping between entire spatial fields (function 

space) rather than individual and neighbouring grid 

points.  Its Fourier architecture captures both low- 

and high-frequency components, efficiently 

representing global and local structures.  Second, 

the integration of a Vision Transformer enables the 

model to learn long-range spatial dependencies.  

The Vision Transformer was a landmark paper on 

self-attention, which allows networks to prioritize 

relevant information when learning; published by 

Google in 2017 and used in LLMs such as ChatGPT – 

it is one of the most cited papers this century 

(Pearson et al., 2025).  Together, these innovations 

enabled fast learning, high resolution, and efficient 

computation. 

GraphCast (Lam et al., 2023) appeared in pre-prints soon after, later published in Science, applying 

Graph Neural Networks to global forecasting.  GNNs represent the atmosphere as an icosahedral 

mesh, enabling uniform spatial resolution.  Nodes (grid points) are connected by edges which define 

the flow of information between all nodes – allowing the model to learn teleconnections regardless 

of distance or input grid regularity.  Forecasting over 1,000 variables up to 10 days ahead, GraphCast 

achieved greater accuracy than ECMWF IFS conventional NWP model – including at 10 day lead times 

for the top 2% of hot days over land (Lam et al., 2023).   

Previous models had taken their names from their architecture, but Pangu-Weather changed that – 

named after a primordial mythical being who separated heaven and earth and became geographic 

features.  This deterministic model introduced two new approaches (Bi et al., 2023).  Firstly, it used a 

three-dimensional approach, using vertical structure via pressure level data.  Secondly it trained 

separate models for 1, 3, 6 and 24-hour lead times, which reduced errors over long lead times. 

Figure 1: timeline of selected ML weather models 

https://doi.org/10.48550/arXiv.2202.11214
https://arxiv.org/abs/2010.08895
https://www.nature.com/articles/d41586-025-01125-9
https://doi.org/10.1126/science.adi2336
https://doi.org/10.1126/science.adi2336
https://www.nature.com/articles/s41586-023-06185-3
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Throughout these advances ECMWF, the European Centre for Medium-Range Weather Forecasts – 

both a research institute and operational service – has been central in the application of ML.  The 

ECMWF operational NWP, the IFS HRES, is often used as the benchmark model comparison, or the 

ensemble IFS ENS.  ECMWF developed its own deterministic graph-based (GNN) system, AIFS (Lang 

et al., 2024 – arXiv), and an ensemble AIFS-ENS based on diffusion (Figure 1) (Lang et al., 2024).  

Diffusion is the same approach used for image generation and in a later MLWP model, GenCast – 

features in the next section of this report, where diffusion will be discussed in more detail.  The AIFS-

ENS was made operational in early 2025, alongside the longstanding conventional NWP the IFS.   

ECMWF displays third-party MLWP outputs in real-time and evaluates model performance. Figure 2 

shows comparative performance through the root mean squared error of two-metre air temperature 

for the northern extra-tropics, for winter 2024/25 – showing that Aurora consistently achieves the 

greatest accuracy on that broad metric – outperforming the operational NWP, IFS.  A range of charts 

and performance scores are available from the ECMWF chart catalogue. 

 

 

 

Figure 2: RMSE 2m temperature, winter 24/25 northern extra-tropics - consistently best performance from Aurora  

IFS (ECWMF operational NWP) (red) and five MLWP models: AIFS (ECMWF) (brown), FourCastNet (green), GraphCast (cyan), 
Pangu-Weather (dark blue) & Aurora (orange) – available from ECMWF 

 

 

https://www.ecmwf.int/en/about
https://arxiv.org/abs/2406.01465
https://arxiv.org/abs/2406.01465
https://www.ecmwf.int/en/about/media-centre/aifs-blog/2024/enter-ensembles
https://charts.ecmwf.int/?facets=%7B%22Product%20type%22%3A%5B%22Experimental%3A%20Machine%20learning%20models%22%5D%7D
https://charts.ecmwf.int/products/plwww_3m_fc_aimodels_surface_mean?area=Europe&parameter=Temperature%202m&score=Root%20mean%20square%20error
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ClimaX (Nguyen et al., 2023 – arXiv) was the first foundation model, trained on truly vast and 

heterogeneous datasets including ERA5 and the climate model output of CMIP6.  The approach 

introduced a shared transformer encoder pre-trained, and which can be fine-tuned to more specific 

tasks.  ClimaX is capable of global and regional forecasts, also sub-seasonal and climate projections, 

and downscaling.  Similarly, Prithvi WxC (Schmude et al., 2024 – arXiv) is a later foundation model, a 

collaboration between IBM and NASA. 

Another first, Aardvark, has recently been published in Nature (Allen et al., 2025).  The system has 

two notable features, firstly it can run on a desktop computer in minutes (Turner, 2025).  Secondly, 

whilst it has been trained on ERA5, it does not need any NWP products to run, it only requires 

observations as input such as satellite and weather station data.  This end-to-end system, fully 

observation-driven, has been an aspiration in the field (McNally et al., 2024).  Aardvark shows strong 

performance against operational NWP, even with a coarse 1.5 degree output and using just 10% of 

inputs to existing NWP systems (Turner, 2025).  These features make Aardvark valuable for 

applications like disaster preparedness in low-resource settings. 

The details: GenCast & Aurora 

To illustrate recent architectures, two models are detailed here, GenCast and Aurora (Figure 1).  

GenCast is a probabilistic generative model for medium range 15 day forecasting (Price et al., 2025) 

while Aurora is a foundation model which can be tuned to multiple applications including forecasting 

air quality and tropical cyclone tracks (Bodnar et al., 2024 – arXiv). 

GenCast is a generative model – in training it learns the underlying data distribution and then 

produces new realistic samples.  This generative function comes from using a diffusion process, 

based on noise.  In training, to predict conditions 12 hours ahead (T+12), GenCast takes two input 

fields from ERA5, effectively T-12 and T+0.  Rather than forecasting T+12 directly, it computes the 

residual (i.e., the change between T–12 and T+0) and adds scaled noise to create the first guess.  

GenCast then iteratively removes noise  over multiple steps.  By perturbing the tendency rather than 

the absolute state, it preserves coherent atmospheric structures.  GenCast was pre-trained at 1° 

resolution on 40 years of ERA5 data, then fine-tuned at 0.25°. 

In forecast mode, known as inference in ML, GenCast predicts each T+12 using the two most recent 

states, continuing until it reaches T+360 (15 days).  This type of rolling prediction is called 

autoregression in ML.  Generating an ensemble is straightforward due to the diffusion approach; 

each ensemble member starts from a different scaled noise sample.  50 ensemble members were 

chosen to match ECMWF IFS ENS – a lot more could be produced.  While diffusion models are 

computationally intensive—each step involves multiple denoising passes—GenCast can produce a 

full 15-day forecast in minutes per member. Its Graph Neural Network (GNN), adapted from 

GraphCast (discussed earlier), captures and supports spatial dependencies across time steps.  

GenCast outperformed IFS ENS, including extreme temperatures, the 99.9th and 99.99th percentiles, 

out to 15 days (Price et al., 2025). 

In contrast, Aurora is a foundation model – the term foundation model came from Stanford in 2021 – 

where the model is a common basis for many task specific adaptations.  Aurora is pre-trained on 

more than one million hours of global Earth system data, including weather reanalyses, operational 

forecasts, and the CMIP6 climate simulations.  It contains 1.3 billion parameters and uses a 3D Swin 

Transformer, an architecture adapted from computer vision.  The Swin, shifted window, transformer 

improves efficiency by dividing data into local windows and then shifting them between layers to 

capture broader spatial and vertical dependencies.  Aurora also employs perceiver-based encoders 

https://arxiv.org/abs/2301.10343
https://arxiv.org/abs/2409.13598
https://doi.org/10.1038/s41586-025-08897-0
https://www.cam.ac.uk/research/news/fully-ai-driven-weather-prediction-system-could-start-revolution-in-forecasting
https://www.ecmwf.int/en/newsletter/178/earth-system-science/red-sky-night-producing-weather-forecasts-directly
https://www.cam.ac.uk/research/news/fully-ai-driven-weather-prediction-system-could-start-revolution-in-forecasting
https://doi.org/10.1038/s41586-024-08252-9
https://doi.org/10.48550/arXiv.2405.13063
https://doi.org/10.1038/s41586-024-08252-9
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and decoders which allow the model to ingest varying types and shapes of data, transforming them 

to a common internal format to combine different input data. 

These architectural choices allow Aurora to model complex Earth system dynamics across domains. 

After pretraining, it can be fine-tuned for tasks like 10-day global weather forecasting, 5-day air 

quality prediction, ocean wave modelling, and tropical cyclone tracking.  Aurora (Bodnar et al., 2024 

– arXiv) produces 10-day global forecasts in under a minute and 5-day air quality predictions in 

seconds. 

 

Summary 

From the fast run times of FourCastNet to the flexible tuning of Aurora and the ensemble uncertainty 

quantification of GenCast, MLWP is approaching, and by some metrics exceeding NWP performance, 

all with significantly reduced operational computational cost.  The enablers of that progress include: 

• Open access to high-resolution datasets such as ERA5, 

• Cross-disciplinary architecture design (e.g. transformers, diffusion), 

• Collaboration between research institutes, operational centres, and tech companies, 

• Access to MLWP on GitHub and Hugging Face – for sharing data, code and documentation. 

 

For further reading, Chen et al. (2023) offers a good overview of methods and architectures, while 

Zhang et al. (2025) provides an up-to-date review of knowledge, methods, trends and challenges.  

Waqas et al. (2024) offers a systematic review of AI integrated with NWP.  For more on MLWP 

comparative performance, Google Research has a scorecard of several models at WeatherBench2.  

https://doi.org/10.48550/arXiv.2405.13063
https://github.com/
https://huggingface.co/
https://doi.org/10.3390/app132112019
https://doi.org/10.3390/atmos16010082
https://doi.org/10.1016/j.nhres.2024.11.004
https://sites.research.google/weatherbench/
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3. On the horizon: ML in heatwave forecasting & beyond medium range 

General MLWP at medium range & S2S 

MLWP is extending skill into the medium and sub-seasonal range (15–46 days).  Two deterministic 

general purpose transformer models, FuXi and FengWu have moved to architectures with ensemble 

generation for forecasts out to six weeks in S2S versions.  FuXi-S2S demonstrates improved skill over 

ECMWF IFS S2S for several metrics, including 2m temperature and Madden-Julian Oscillation (MJO) 

prediction up to day 36 (Chen et al., 2024).  FengWu-W2S uses  ocean–atmosphere–land coupling 

constraints for physical consistency (Ling et al., 2024).  The results for 2m temperature show 

comparable but greater skill than ECMWF S2S and FuXi-S2S at three to six weeks.  FengWu-W2S can 

predict the MJO to 37 days, slightly longer than ECMWF S2S or FuXi-S2S, and predicts the North 

Atlantic Oscillation with greater skill than ECMWF S2S at four to six weeks. 

Climate 

ML models are also being tested in climate applications.  NeuralGCM (Kochkov et al., 2024) is a 

hybrid model trained on ERA5 that performs well for 10–15 day forecasts and can simulate climate 

metrics over multiple decades when forced with prescribed sea surface temperatures.  The model is 

not coupled to land or ocean and does not include greenhouse gases or aerosols.  NeuralGCM does 

not show a clear trend of increasing error when initialised further into the future from the training 

data.  ‘Our results provide strong evidence for the disputed hypothesis that learning to predict short-

term weather is an effective way to tune parameterisations for climate.’ (Kochkov et al., 2024). 

ML improving local & regional NWP for extreme heat 

Machine learning is being used to improve heatwave forecasting at local scales and to extend skill in 

forecasting surface extremes. At the urban level, ML has been used for bias correction and 

downscaling.  A recent London study (Blunn et al., 2024) used ML to combine high resolution NWP 

output with citizen science weather station observations during heatwaves.  ML reduced mean 

absolute temperature error by 11%, identifying latent heat flux as the most important predictor of 

temperature bias.  In regional modelling, ML can support sensitivity analysis of NWP physical 

schemes. One example from Australia (Reddy et al., 2023) used ML to identify, of twenty four 

parameters, the two key drivers of modelled surface temperature and relative humidity predictions: 

the shortwave radiation scattering parameter and saturated soil water content multiplier.  These two 

studies show complementary uses of ML in improving conventional NWP. 

MLWP extending lead times for extreme heat prediction 

Papers from 2022 to 2025 exploring the use of ML approaches for extending the lead times of 

heatwave predictions is detailed in Table 1, and several discussed below.  The table also includes 

recent papers on explainable AI (XAI) discussed in the next section, and two review papers. 

Among the more recent and longer-range examples is the Weirich-Benet et al. (2023) study, which 

applied both linear regression and random forests to forecast summer heatwaves in Central Europe 

at lead times of 1–6 weeks. Key predictors included 500 hPa geopotential height, soil moisture, and 

sea surface temperatures. While model performance declined with increasing lead time, the 

machine learning outputs outperformed persistence and climatology. Beyond two weeks, their 

forecasts were as skilful as the ECMWF sub seasonal ensemble-mean hindcast for the region. 

Lopez-Gomez et al. (2023) explored ML configurations trained specifically on extreme temperatures 

— rather than all temperatures.  This adjustment led to improved performance over persistence and 

comparable skill with ECMWF S2S after day 14. The MLWP could forecast out-of-sample events, but 

struggled with extremely hot days, above the 95th percentile.  

https://confluence.ecmwf.int/display/S2S/ECMWF+model+description
https://doi.org/10.1038/s41467-024-50714-1
https://arxiv.org/pdf/2411.10191
https://www.nature.com/articles/s41586-024-07744-y
https://www.nature.com/articles/s41586-024-07744-y
https://doi.org/10.1002/met.2200
file:///C:/Users/Vicky/OneDrive/Desktop/Work/ClimateCollective/3_ML_report/SummaryDocument/10.1088/1748-9326/ad0eb0
https://doi.org/10.1175/AIES-D-22-0038.1
https://doi.org/10.1175/AIES-D-22-0035.1
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In a case study of the North American Pacific Northwest 2021 heatwave, the anomalous 

temperatures were only predicted 2 to 5 days prior, although at about a month ahead the MLWP was 

similar in structure to the ECMWF ensemble.  Duan et al. (2025), apply the NeuralGCM, discussed 

above, to explore the Pacific Northwest heatwave, which it replicates. 

Xie et al. (2024), used a Convolutional Neural Network – an approach that finds local spatial 

correlations in gridded data – to forecast heatwaves in China up to 30 days ahead. The method 

filtered out high-frequency signals (<10 days) and isolated the 10–90 day low-frequency background 

state, using inputs from NCEP/NCAR reanalysis and polar-orbiting satellite data. While forecast skill 

was lower up to 20 days, the model outperformed both the China Meteorological Administration 

NWP and ECMWF S2S ensemble mean between days 20 and 30 when averaged across the country. 

Table 1: summary of papers on ML approaches applied to heat extremes from 2022 to 2025 

Reference & link Data or model Area Technique Lead time or 
purpose 

Ennis et al., 2025 GraphCast, FuXi, 
Pangu, GEFS 

USA MLWP – NWP comparison Up to 20 days 

Lovo et al., 2025 CESM (NCAR) France Multiple ML models, also 
XAI study 

XAI 

Shafiq et al., 
2025 

5 years weather 
observations  

Lahore XAI study, LSTM best 
performance 

1-3 days, XAI 

Camps-Valls et 
al., 2025 

Multiple Global Review of methods Review paper 

Duan et al., 2025 ERA5 Pacific 
Northwest 

NeuralGCM and ensemble 
comparison E3SM NWP 

6 days 

Xie et al., 2024 NCEP/NCAR 
reanalysis 

China CNN with filtering  Up to 30 days 

Weirich Benet et 
al., 2023 

ECMWF Europe Linear and Random Forest 1-6 weeks 

Lopez Gomez et 
al., 2023 

ERA5 Global Multiple ML models Up to 28 days 

Salcedo-Sanz et 
al., 2023 

Multiple Global Review of methods Review paper 

 

MLWP for extremes – open questions 

Despite encouraging case studies, recent reviews caution that MLWP is not ready for operational 

forecasting of extremes. Olivetti & Messori (2024) highlight three key limitations: (i) most models are 

tuned for average forecast skill, not extremes; (ii) architectures are not optimised for the limited data 

available on rare events; and (iii) assumptions about error distributions are often too simplistic. They 

also note that leading global MLWP lack validation for extreme event prediction.  

Salcedo-Sanz et al. (2023) provide a history and broader critique, focused on extreme events and a 

literature review of heatwaves. They also emphasise the limited data available for training on rare 

events and argue that most current ML systems lack integration with physical climate knowledge to 

achieve reliable predictions. The authors call for the use of multiple reanalysis datasets, improved 

model transparency through explainable AI (XAI), and greater focus on compound and concurrent 

extremes.  Similarly, the review paper of Camps-Valls et al., (2025) discusses the hurdle of limited 

training data, and of deploying understandable models – needed for gaining trust.  Many authors 

underscore that MLWP requires consistent and transparent development for extremes.  

https://doi.org/10.48550/arXiv.2410.09120
https://doi.org/10.1029/2024GL111076
https://arxiv.org/pdf/2504.21195
https://arxiv.org/abs/2410.00984
https://www.cesm.ucar.edu/
https://doi.org/10.1371/journal.pone.0316367
https://doi.org/10.1371/journal.pone.0316367
https://www.nature.com/articles/s41467-025-56573-8
https://www.nature.com/articles/s41467-025-56573-8
https://doi.org/10.48550/arXiv.2410.09120
https://e3sm.org/
https://doi.org/10.1029/2024GL111076
https://doi.org/10.1175/AIES-D-22-0038.1
https://doi.org/10.1175/AIES-D-22-0038.1
https://doi.org/10.1175/AIES-D-22-0035.1
https://doi.org/10.1175/AIES-D-22-0035.1
https://doi.org/10.1007/s00704-023-04571-5
https://doi.org/10.1007/s00704-023-04571-5
https://doi.org/10.5194/gmd-17-2347-2024
https://doi.org/10.1007/s00704-023-04571-5
https://www.nature.com/articles/s41467-025-56573-8
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4. The heat is on: latest developments 

As MLWP matures, researchers are responding to critiques — including the validation of extreme 

event forecasts.  Recent work evaluated three global MLWP models (FourCastNet, Pangu-Weather, 

GraphCast) alongside ECMWF IFS HRES for events including the 2021 Pacific Northwest heatwave 

(Pasche et al., 2025). While ML models captured the broad structure of the event, they 

underperformed when spatially and temporally aggregated. FourCastNet had the largest errors; 

Pangu-Weather tended to overestimate affected areas for a given threshold. At lead times under a 

week, the IFS HRES remained the most accurate. Notably, MLWP have few variables – lacking surface 

relative humidity – and the authors indicated the need for sea surface temperature and soil moisture 

inputs for longer lead times. A separate study examined 60 U.S. heatwaves and found GraphCast 

consistently outperformed Pangu-Weather and the US GEFS ensemble across most regions with 

ERA5 used as ground truth (Ennis et al., 2025 – arXiv).  The open-source nature of some MLWP 

models allows for this independent analysis and verification – which is likely to continue – assisted by 

the WeatherBench2 (Rasp et al., 2023 – arXiv) database of extreme event cases, (also ClimateBench 

(Watson-Parris et al., 2022)) and ECMWF adding MLWP forecast evaluation to its database of 

extreme cases (Magnusson, 2023). 

Explainability remains a major concern. While studies by Lovo et al. (2025), Shafiq et al. (2025), and 

Wei et al. (2025 – arXiv) have applied explainable AI (XAI) tools to heat forecasting, these often rely 

on simplified models or components. As Lovo notes, Convolutional Neural Networks – the earlier 

predictive approach for MLWP suited to gridded data and used e.g., by GraphCast – ‘are black boxes 

even when using XAI tools’.  More transparent methods, hybrid models combining ML with physical 

constraints, are important for scientific trust and likely to be so for public trust. 

A potential trend is the integration of large language models (LLMs) to support forecast 

interpretation and decision-making. WildfireGPT, developed as a proof-of-concept, combined 

extreme weather projections, literature, and user prompts to generate geospatially contextualized 

response guidance (Xie et al., 2024 – arXiv). Designed to be user-centric and visually integrated, it 

outperformed generic LLMs in ten case studies. A similar ‘HeatwaveGPT’ could help bridge the gap 

between technical NWP, ML outputs, operational needs and actions, and public-facing messaging. 

Looking ahead, the field is still evolving and diversifying.  Aardvark, capable of generating forecasts 

directly from observations, represents a shift in architecture – able to include some measurements 

too complex for NWP assimilation (McNally et al., 2024). And new systems regularly appear such as 

the open source WeatherMesh-3 (Du et al., 2025) by an atmospheric sensing company, WindBorne.  

The S2S timescales and beyond will be a domain of interest; just as MLWP can outperform NWP at 

short to medium range (1 to 15 days) seasonal predictions will improve for MLWP – including global 

seasonal or decadal predictions such as ACE2 (Watt-Meyer et al., 2024, Kent et al., 2025 – arXiv).  

Another recent development is from NVIDIA – Earth-2 is their commercial digital twin which can be 

used for kilometre scale weather and climate predictions, it is focused on risk and is a business 

offering (NVIDIA, 2025).  Establishing business models could be a next step for other organisations 

that have invested resources over the last few years. 

As validation continues, explainability evolves and new models appear, the importance of ML in 

meteorological prediction looks set to remain.  Progress could be incremental or radical depending 

on performance and resourcing pressures – but going too far too fast could undermine trust and 

acceptance – from science and from the public.   

  

https://doi.org/10.1175/AIES-D-24-0033.1
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https://doi.org/10.1371/journal.pone.0316367
https://doi.org/10.48550/arXiv.2503.08163
https://arxiv.org/abs/2402.07877
https://www.ecmwf.int/en/newsletter/178/earth-system-science/red-sky-night-producing-weather-forecasts-directly
https://arxiv.org/html/2503.22235
https://arxiv.org/abs/2411.11268
https://arxiv.org/abs/2503.23953
https://nvidianews.nvidia.com/news/nvidia-earth-2-climate-tech-weather-prediction-disaster-preparedness


Hot Topics: Machine Learning for Weather Forecasting & Heatwave Prediction Medium Range & Beyond 

 

29th May 2025              UBC Climate Solutions Research Collective – Solutions Scholars Program 2024/25              Vicky Lucas 

5. Flashpoint: enduring challenges 

Machine learning is a growing contributor to meteorological research and, with AIFS-ENS at ECMWF, 

part of the operational suite.  Challenges remain – technical, scientific, systemic and social – that will 

shape the long-term role of ML in meteorological prediction.   

i. Adoption: MLWP’s headline strengths—global skill scores and fast run times—are useful for 

benchmarking and publication but operational use is earned through ongoing exposure and 

case-by-case comparisons.  Many MLWP systems still generate overly smooth fields, grow in bias 

with lead time (Bouallègue et al., 2024), and miss mesoscale features (Bonavita, 2024).  MLWP 

progress builds on decades of NWP based on daily scrutiny and incremental development. 

ii. Limits: There are technical and scientific limits to weather prediction.  NWP is computationally 

expensive and time critical operational NWP may be reaching affordable computational limits 

(Bauer, 2024) – making MLWP attractive operationally if not for the intense training.  Rare 

extremes and data-sparse regions remain a model training issue. 

iii. Black swans: Can ML predict extreme events unseen in the training data, compounded by a 

changing climate?  MLWP produces plausible outcomes learnt from past data (Bouallègue et al., 

2024).  Some studies have shown that MLWP can forecast out-of-sample extreme heat events 

(Lopez-Gomez et al., 2023).  For climate projections, extrapolation to different dynamics or 

anticipating tipping points may require hybrid models combining ML and scientific knowledge 

(Patel, 2022 – arXiv). 

iv. Black boxes: MLWP is difficult to interpret.  Explainability is very important in science-based 

predictions, for analysis, knowledge discovery and supporting judgements.  Explainable AI (XAI) 

and physics informed neural networks (PINN) are developing fields – but even simple ML models 

may remain opaque with XAI tools (Lovo et al., 2025).  The interpretability gap persists and 

raised by many, especially for rare extreme events (Zhang et al., 2025, Waqas et al., 2024).   

v. Trust: ML may obscure the forecasting process and for public-facing products this could be 

compounded if LLMs were used in forecast delivery.  Public trust depends not only on accuracy, 

but also accountability.  Transparency and examination of prediction performance is necessary 

to increase public trust in ML (Pasche et al., 2025), as is deploying understandable models 

(Camps-Valls et al., 2025). 

vi. Impact: MLWP must go beyond summary metrics to transparently focus on events and features 

that matter.  Bias in evaluations should be considered, and assessments based on impact to 

ensure societal equity (Pasche et al., 2025).  Evaluations should reflect real-world consequences 

and consider diverse inputs such as land use or exposure to better guide decisions and address 

vulnerabilities. 

vii. Institutions: National weather services and research agencies face strategic uncertainty as 

MLWP challenges traditional NWP frameworks.  Bauer (2024) highlights the need for 

coordinated investments in data infrastructure and high-performance computing to adapt to 

this shift.  Integrating ML into operational systems presents structural and cultural challenges 

(Zhang et al., 2025), raising questions about whether MLWP will become dominant, operate in 

parallel with hybrid workflows, or remain subordinate to NWP. 

 

A shift from equation-driven NWP to data-driven MLWP is gaining pace, enabled by decades of 

atmospheric data, international cooperation and growing cross-sector momentum.  The transition is 

full of tensions – with the flame already lit, but the blaze yet to take hold. 
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6. Glossary: light relief 

 

Convolutional Neural Network 
(CNN) 

Automatically detects spatial patterns, well suited to gridded 
data to find local spatial correlation (more from IBM)  

Deep Learning Multilayered neural networks that learn representations from 
data, a subset of machine learning (more from IBM) 

Diffusion model Generative models, used for image creation, adds noise to the 
input, then reverses the process to create the output – for sharp 
structures, extremes and ensemble generation (more from IBM) 

Explainable AI Methods to find links and dependencies in the modelling 
process, the influence of inputs and sensitivity of outputs (more 
from IBM) 

Fine-tuning (after pre-training) Adapting a pre-trained model to a specific task using a focused 
dataset, leveraging existing model knowledge (more from IBM) 

Foundation model Designed to fulfil a broad range of tasks having been pre-trained 
on immense datasets, able to transfer learning to other tasks by 
fine-tuning or prompting – such as Aurora (more from IBM) 

Generative artificial 
intelligence 

Models that learn the underlying distribution of data and that 
can generate new realistic samples (more from IBM) 

Graph Neural Network (GNN) Designed to work on data connected as nodes and edges, rather 
than laid out on a regular grid, the model learns relationships 
between nodes (more from IBM) 

Hybrid model Combining machine learning with physics-based methods to 
complement, enhance or replace numerical models – keeping 
core physical constraints – can be used for parameterisation 
schemes or bias correction.  More interpretable than pure ML. 

Neural network A machine learning model that makes decisions by mimicking 
the way brain neurons work, connecting to others with its own 
weights and activation thresholds (more from IBM) 

Physics Informed Neural 
Network (PINN) 

A type of neural network that embeds physical laws limiting the 
outputs to being physically consistent – and can be used to make 
hybrid models (more from Wikipedia) 

Predictive artificial intelligence Discriminative or predictive models focus on classification or 
regression – examples include GraphCast and supervised models 
such as CNNs, LSTMs and random forests (more from IBM) 

Pre-training Pre-training is in two phases, the model making predictions from 
inputs and a loss function measuring the difference between the 
output and the ‘correct’ answer (more from IBM) 

Random forest A common supervised learning algorithm which combines the 
outputs of many individual decision trees, the output is either 
majority vote or averaged (more from IBM) 

Supervised learning Using labelled input-output pairs to make predictions on new 
data (more from IBM) – see also unsupervised learning 

Transformer A versatile architecture that weights relationships between all 
parts of an input, captures long-range dependencies and 
effective for sequential or spatial data (more from IBM) 

Unsupervised learning Finding patterns or groups in data without labelled outputs 
(more from IBM) 

 

https://www.ibm.com/think/topics/convolutional-neural-networks
https://www.ibm.com/think/topics/deep-learning
https://www.ibm.com/think/topics/diffusion-models
https://www.ibm.com/think/topics/explainable-ai
https://www.ibm.com/think/topics/explainable-ai
https://www.ibm.com/think/topics/fine-tuning
https://www.ibm.com/think/topics/foundation-models
https://www.ibm.com/think/topics/deep-learning
https://www.ibm.com/think/topics/graph-neural-network
https://www.ibm.com/think/topics/deep-learning
https://en.wikipedia.org/wiki/Physics-informed_neural_networks
https://www.ibm.com/think/topics/predictive-ai
https://www.ibm.com/think/topics/fine-tuning
https://www.ibm.com/think/topics/random-forest
https://www.ibm.com/think/topics/supervised-learning
https://www.ibm.com/think/topics/transformer-model
https://www.ibm.com/think/topics/unsupervised-learning
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