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Introduction 

Since the Green Revolution, agricultural production has surged, covering almost half of the world’s 

habitable land (Ellis et al., 2010). While this expansion has increased global calorie production, it has 

failed to deliver food security while at the same time reshaping landscapes and communities, with 

implications for biodiversity, rural communities, and global emissions (Ellis and Ramankutty, 2008; 

Bennetzen et al., 2016). On a global scale, agricultural production has been a major source of 

greenhouse gas (GHG) emissions (Bennetzen et al., 2016). Presently, approximately one-quarter of 

global GHG emissions come from the agriculture sector (Poore, 2018).  These emissions contribute to 

climate change, exacerbating unpredictable and extreme weather events like prolonged drought, high 

temperatures, and flooding, which then simultaneously impact agricultural production (Webb et al., 

2020). These impacts have implications for food security across the world and for the well-being of rural 

and urban communities (Kim et al., 2019; Gaupp et al., 2020). Smaller-scale and diversified 

agroecological farming systems have been presented as key alternatives to the current food system 

characterized by farmland concentration, massive scales, and production for international trade (IPES-

Food, 2024). Thus, there is a need to investigate the sustainability potential of small-scale agriculture in 

rigorous and scalable ways. Agricultural emissions calculators are one tool among many that can be 

used to quantify agricultural emissions and support decision-making needed to increase farm 

sustainability. 

Emissions from agriculture have steadily risen in recent decades, a worrying trend. In 2007, Verge 

predicted a 50% increase in emissions from agriculture by 2030 from 2000 levels, driven by developing 

countries transitioning toward industrial agriculture and nitrogen fertilizer use. More recent research 

shows predictions like these align with Tongwane et al. (2018), identifying a more than 50% increase in 

African agricultural emissions between 1994 and 2014. One potential explanation for the rise in 

emissions is the disappearance of small-scale agroecological farms in favor of large-scale farming (IPES-

Food, 2024). Mechanization, trade liberalization, and labor exits from the agriculture sector are key 

factors contributing to this change. While these large farms may have efficiencies in terms of output to 

cost, they may not necessarily adopt sustainable choices when managing their farms. On the other hand, 

small-scale farms have the potential to implement agroecologically beneficial practices and tend to be 

viewed as a natural-based solution to environmental issues, often making them a focus of sustainable 
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policy (Ricciardi et al., 2021). However, the relationship between farm size, practices, and emissions 

remains far from understood (Ricciardi et al., 2021), and a lack of reliable means to measure emissions 

adds to the challenge of implementing effective, evidence-based policy. Understanding the 

relationships between farm size, crop and landscape composition, and efficiency versus emissions 

tradeoffs could be key to understanding whether a transition towards less consolidated and more 

diverse farming systems can provide a path to a sustainable agricultural sector. For this reason, the 

generation of accurate emissions estimates for small-scale diversified farms is extremely important. To 

support this transition, our team evaluated and compared several emissions calculators, primarily to 

inform farmers of existing tools that can support management efforts to improve their on-farm 

sustainability and reduce their climate impacts. 

 

Calculating Emissions in Agriculture 

Estimating GHG emissions in the agricultural sector is key to understanding the relationships between 

agricultural management practices and emissions generation, which will help inform climate change 

mitigation strategies in the sector. While these methods provide useful estimates at the national or 

global scale, they are not as effective for formulating focused food and emission reduction strategies for 

regionally specific farm management systems. Many countries have tried to adopt price-based and 

regulatory measures to reduce their emissions, which often include policies on land use, soil 

conservation, and renewable energy integration, among others (Nsabiyeze, 2024; Wauters et al., 2010; 

Kagata et al, 2018). Nevertheless, the scale and effectiveness of these efforts have been restricted due 

to the challenge of measuring emissions accurately at the local farm level (Nsabiyeze, 2024). 

Secondly, dependable and transparent assessments of emissions at the local farm level can provide 

essential insights for producers, enabling them to monitor their GHG footprints and modify their 

practices to pursue sustainability goals and shift consumer preferences towards more sustainable 

products, which may also benefit farmers economically. Furthermore, this could help farmers comply 

with future international environmental regulations, including potential carbon taxes on imported 

agricultural goods.  

Relatedly, developing and scaling out these measurements may facilitate the growth of an agricultural 

emissions market or the integration of agriculture into existing carbon markets, offering the incentives 

and infrastructure for local producers and consumers to be compensated for ecosystem services and 

sustainable practices. Finally, the interconnection of the agricultural sector with other sectors of the 

economy, along with the disproportionate impact of carbon taxes on non-agricultural sectors, could 

discourage sustainable economic growth across sectors especially when one sector is taxed and the 

other is not. Therefore, measuring emissions in the agriculture sector would pave the way for a more 

level playing field across sectors.  

 

Rise of Emissions Calculators 

The increasing global demand for sustainable agrifood systems combined with the Canadian 

government's goal to assess carbon footprints in agriculture (AAFC, 2025) has led to the development 

of various public and private emissions calculators for food producers. The goal of agricultural emissions 

calculators is to simplify complex agricultural processes into a straightforward and often static set of 
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variables that estimate emissions. Emissions calculators take information about farm management 

practices and on-farm inputs (e.g. crop types, nutrient management plans, cultivation practices, etc.) and 

combine that information with locational (geographical location, soil type, etc.) and weather 

(temperature and precipitation) data to estimate GHG emissions, often reported in terms of carbon 

dioxide equivalents1 (CO2e). Stakeholders, like farmers, researchers, and policymakers, can input farm 

data to retrieve emissions estimates from farms. While imprecise, these calculators have greater scaling 

potential than in-field emissions estimation technology, such as trace gas analyzers￼ because they are 

inexpensive or often free to use, offer an accessible approach for non-specialists, and can be easily 

understood by a general user (Richards et al., 2016).  

Nearly all the calculators our team examined (see Table 1) were drawn from one of the three tier models 

established by the Intergovernmental Panel on Climate Change (IPCC) in 2006 and updated in 2019. 

Tier 1 concentrates on national inventories and emissions measurements. As the tiers progress, model 

complexity increases, leading to greater reliability of emissions accuracy at more localized levels. This 

balance between precision and complexity is fundamental to these models and their emissions 

estimates. Higher complexity (for instance, in Tier 3 models such as Denitrification and Decomposition - 

DNDC) demands much more detailed and frequent data to assess emissions locally, which can be quite 

a challenge for small-scale farmers. For example, one study conducted comparisons of Tier 1, 2, and 3 

modeling (DNDC.vCAN) to assess nitrous oxide emissions in Canadian soils (Obi-Njoku et al. 2024). The 

Tier 3 modelling required extensive data, including but not limited to soil characteristics (texture, bulk 

density, clay content, conductivity, organic carbon, pH, field capacity, wilting points, porosity), historical 

daily climate data (wind speed, relative humidity, air temperature, solar radiation, precipitation), crop 

characteristics (biomass, yield, carbon and nitrogen concentration), and farm management records such 

as tillage, fertilizer application, crop rotation, planting/harvest dates (Obi-Njoku et al. 2024). This 

intricacy may obscure the relationship between management practices and emissions, making it difficult 

for farmers to grasp how their decisions influence emissions, particularly without clear, trustworthy, and 

consistent estimates. Conversely, simpler models often fail to capture the emissions profiles at the farm 

level. Therefore, finding the right equilibrium between complexity, accuracy, and precision is 

essential for any scalable emissions calculator. 

These calculators are not free from limitations. Firstly, the calculators we reviewed appear to be more 

suited for large-scale industrial and monoculture farms, as production processes on those farms are 

likely to be less complex and diverse, making it easier to trace their emissions contributions throughout 

their operations. In contrast, small scale diversified farms are likely to have significantly heterogeneous 

management practices (e.g. intercropping, high levels of crop diversity within a growing season, crop 

rotations, multiple plantings of annuals, mix of annuals and perennials) and input choices across a 

growing season, which may be difficult to fully capture with these calculators. Secondly, regardless of 

on-farm complexities, these calculators differ significantly in their input requirements and 

methodologies for calculating agricultural emissions.  

Our project focuses on the crucial intersection of emission estimation within the agricultural sector, 

where an effective and scalable tool is still under development. It offers an overview of various successful 

 
1 Carbon dioxide equivalent (CO2e) is a standardized metric used to represent the global warming potential of 
different GHGs, in their equivalent amount of CO2, since it is the most common GHG. Agricultural emissions 
are dominated by N2O and CH4, which have global warming potentials of 273 and 28, respectively. These 
GHGs can be multiplied by a conversion factor to transform them into CO2e.  
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and unsuccessful pathways, discusses the challenges and drawbacks of some calculators, and 

showcases our contributions towards a unified calculator framework for small-scale farmers on an 

established platform. Additionally, it delivers accessible insights and resources for navigating this 

complex yet vital agricultural emissions landscape through our Emissions Digest and outlines a roadmap 

for future efforts in this field. 

In our project we focused on assessing and reviewing three of the most important agricultural emissions 

calculators available. Holos is a calculator developed by Agriculture and Agri-food Canada with a 

specific focus on Canadian agriculture (AAFC, 2025). We reviewed COMET Farm which is a calculator 

developed by the USDA for farmers in the United States (USDA, 2019). Both rely on a mix of Tier 1 and 

2 models but only have the ability to estimate emissions within their national borders because they rely 

on nationally specific emissions factors that have only been validated for their respective national 

agricultural regions. Cool Farm Tool was developed by the Cool Farm Alliance starting in the late 2000s 

as a partnership between Unilever and the University of Aberdeen, meant to support Unilever’s supply 

chain and farmers internationally. Cool Farm Tool also uses a mix of Tier 1 and 2 methodologies and is 

frequently being updated to refine the methods to improve accuracy. 

 

Table 1. Table outlining details, including the creator, focus, and IPCC Tier for each emissions calculator (i.e., Holos, 

COMET Farm, and Cool Farm Tool). 

Calculator Author/Creator Regional Focus IPCC Tier 

Holos Agriculture and Agri-food 
Canada 

Canada (primarily prairies) Tier 1 and 2 

COMET Farm United States Department of 
Agriculture 

USA (primarily prairies and 
MidWest) 

Tier 1 and 2 

Cool Farm Tool Cool Farm Alliance including 
Unilever and the University 
of Aberdeen 

Global (primarily for industrial 
scale farms) 

Tier 1 and 2 

 

Climate Solutions Project 

We began with four objectives: (a) adapt Holos, a Canadian-based agricultural emissions calculator, into 

PyHolos, a model written in Python that is designed to better suit small, diversified farms in British 

Columbia, Canada, while integrating the model into LiteFarm 2 ; (b) compare PyHolos emissions 

estimates with on-farm emissions measurements taken at the UBC Farm to begin benchmarking; (c) 

compare and contrast outputs from Holos and PyHolos with other mainstream emissions calculators 

(Comet and Cool Farm); (d) create farmer-facing science communication materials to facilitate the 

uptake of agricultural emissions calculators. While our project evolved over the course of the term, these 

objectives guided our intentions. We will briefly describe this work in the section that follows, as well as 

explain the relevance of this experience for future agricultural emissions estimation projects.  

 

 

 
2 LiteFarm is an app incubated at the Centre for Sustainable Food Systems at the University of British Columbia and used by 
hundreds of farmers worldwide to track their management practices.  
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Translating Holos 

Holos is originally written in the coding language of C# and is comprised of multiple ‘modules’ which 

estimate a portion of the emissions profile (i.e. direct/indirect emissions from different aspects of the 

agricultural production process). To adapt the Holos emissions calculator and make it better suited to 

the LiteFarm system – which is used by thousands of small, diversified farms globally a previous group 

of UBC students worked to translate one of Holos’ modules focused on direct emissions from crop 

residue into a Python version, calling it PyHolos. Their work revealed a notable discrepancy between 

emissions calculated by Holos and those by PyHolos, even for the same modules, possibly due to the 

use of “dummy data,” the incomplete translation of Holos into PyHolos or incomplete documentation, 

which could have resulted in an inaccurate conversion between the calculators. 

Our team expanded upon this previous work to include an additional module for direct emissions from 

fertilizer use. Fertilizer use is linked to the production of nitrous oxide (N2O), which is one of the primary 

and most potent GHGs derived from agriculture, thus making it a key lever for emissions reduction. 

Considering the climate impacts of on-farm fertilizer application, and given that fertilizer is a key, 

measurable input by farmers, this module is crucial in providing farmers with accurate emissions 

estimates that enable them to make management decisions that reduce emissions. 

 

Findings from the Conversion of Holos to PyHolos 

In the process of converting Holos into PyHolos, we reviewed the Holos documentation in depth, 

primarily focusing on crops to codify a single equation that measures direct emissions from agriculture. 

In particular, we incorporated the `fertilizer’ component, one of the key choice variables in crop 

production and highly linked to agricultural emissions. We mapped all the variables related to this 

module and found: (a) a heavy reliance on default values and some hard-coded estimates, referenced 

from articles over a decade old that may not reflect the dynamic changes or disruptions in response 

curves due to recent climatic changes, (b) within Holos, a common and homogenous multiplier across 

different farms stemmed from emission factors, which do not capture the heterogeneity across farms, 

cultivars, and hyperlocal soil and weather relationships. This might be acceptable for national inventory 

calculations, where the goal is to capture aggregate emission levels, but it is not well-suited for local 

emission measures, and (c) despite providing similar inputs to both Holos and PyHolos, the estimates 

proved significantly different, hinting at incomplete documentation. These findings prompted us to 

reassess our objectives and consider whether translating Holos into PyHolos is the most effective 

method for providing emission control to small-scale farmers. 

 

Updating PyHolos for Global Applications 

Initially, our team explored the possibility of estimating emissions and enhancing the existing Holos 

model by using on-farm data captured at the UBC Farm. The goal was to gain insights from analysis of 

the data, using a non-parametric method to identify the factors influencing emissions, and using 

comparative statistics to examine how variations in the relationship between farm inputs and emissions 

occur. Our team conducted an extensive review on applying variable selection techniques and 

prediction models to pinpoint the key factors contributing to emissions variability, assuming access to 

detailed farm-level emissions data alongside input and output records. See Appendix A for 
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methodological proposal documentation. However, we realized that while this avenue is valuable for 

research purposes, it may not provide actionable insights for farmers who seek clear guidance on how 

their practices affect emissions. Therefore, we refocused our efforts on the primary objective, which was 

to make emissions calculations accessible to farmers.  

 

Getting the Right Data 

To benchmark existing calculators and understand how accurately they estimated emissions, a key 

objective was to compare their estimates with observed emissions measured at the UBC Farm. However, 

this task illuminated two key challenges. Firstly, it was very difficult to find a complete, consistent data 

set that was interpretable across numerous years. The second was translating this data into terms that 

were relevant for existing agricultural emissions calculators.  

Since the UBC Farm has been monitoring and collecting emissions data using various trace gas analyzers, 

like the LI-COR, for years (Maltais-Landry et al., 2019), we hoped to input the farm’s management records 

into the calculators and compare the observed emissions with the estimated emissions to determine 

calculator accuracy in a diversified farming context. However, the data retrieval task proved to be more 

challenging than expected owing to the complexity of the UBC Farm record keeping system. While 

records have been meticulously kept for a variety of projects at the farm, the different ambitions of the 

projects meant there were no standard data management protocols utilized by both UBC Farm staff and 

UBC researchers. Here, accuracy for primary research came at the cost of usability for future work.  

Second, translating the data into something relevant for the calculators was often not possible. This is 

partly due to the inability to interpret what information there was, but also there were often differences 

in the metrics of interest, i.e. what information was recorded, by whom, and in what format. This 

heterogeneity between farm records and calculators is a significant barrier for more widespread 

adoption of emissions calculators for on-farm decision information.  

We believe these issues are emblematic of the challenges that exist when implementing emissions 

calculators beyond research farms. Diversified farms are often more labor intensive, adding a greater 

variety of relevant variables and management practices associated with production when compared to 

industrial farms. This makes it challenging to standardize a set of consistent variable inputs that will be 

applicable to various small-scale, diversified farm operations. This contrasts with industrial farm 

operations, which are more systemized, with fewer variables. For this reason, the one-size-fits-all 

approach of existing calculators excludes the majority of small and diversified farms. Therefore, there is 

a need to make calculators more adaptive to the needs of a diverse range of stakeholders.  

 

Minimum Viable Dataset  

While diversified farms are not well described by the one-size-fits-all calculators that simplify agricultural 

emissions to a few variables, we are hesitant to suggest that calculators become more complex. Our 

work on the UBC Farm showed us that adding additional variables comes with significant administrative 

costs, mainly in the labor of keeping additional records. Thus, a core question was to establish the 

minimum set of variables needed to reasonably estimate local emissions, which we called the ‘minimum 

viable data set’.  
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To answer this, we investigated the types of variables used in the three selected calculators; Figure 1 

shows the thematic distribution of their required inputs. Note that these are just the variables users are 

required to enter, not the variables the models use for emissions calculation. The variables not entered 

are often – though not always – generated through standard metrics (eg. COMET Farm does not require 

soil details because it uses default soil characteristics for the US). While this is helpful for reducing 

information requirements, if the local conditions differ from the assumed value, then the calculation may 

be flawed.  

The heterogeneous calculator requirements made it challenging for us to determine which variables are 

most important for farmers to track. Given this heterogeneity we were unable to define a ‘minimum 

viable data set’. Conversations with others working in this field highlighted the many details farmers are 

already tracking that are not currently being used in emissions calculators. For example, food safety 

programs, like CanadaGAP or certification designations, including Organic, require the tracking of a 

variety of farm management data such as amendment types, rates and dates, details on transportation 

(energy use), and water management, which can also be useful for calculating emissions. Additionally, 

we believe emissions calculators should be mindful of their complexity and data entry barriers and follow 

an ‘enter once, use many times’ approach, owing to the intense demands and time constrains farmers 

already face in managing their operations.  

 

Figure 1. Thematic distribution of the required user-provided variables for emissions calculators, Holos, Cool 

Farm Tool and COMET Farm. 

Both public and private calculators, such as Holos, Comet, and CFT, are becoming increasingly 

common. The objective of these calculators is to facilitate emission calculation at the farm level. 

However, the methodologies and inputs that they use vary substantially even within a particular group 

of farm management practices, e.g. fertilizer application.  Additionally, calculators may rely on different 

tiers recommended by IPCC when it comes to measuring emissions, where the first tier is more 

focused towards national level calculations, masking substantial heterogeneity, whereas the third tier is 

more concerned with hyper-local emissions calculations. While these tiers broadly guide the trade-offs 
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between precision and input requirements, they do not provide a clear set of standards to guide each 

of these tiers, which leads to significant heterogeneity among calculators even targeting the same 

scale (national, sub-national, farm, etc.) of emissions. We describe a case study from a farm in Alberta 

to provide suggestive evidence of discrepancy in emission calculation from these different calculators 

compared to field-level emission measurements. Overall, this makes understanding and trusting 

emission estimates challenging from the perspective of a farmer, even if documentation and 

methodology are publicly available. 

  

Case Study: Comparing emissions estimates from various emissions calculators to 

measurements from an Alberta farm 

Given the heterogeneity of emissions calculators and our difficulty benchmarking them with a highly 

diversified farm, such as the UBC Farm, we decided to use data from a large-scale research farm in 

Alberta, in hopes of having simpler on-farm inputs and management practices that were centralized and 

readily available. 

A small plot trial was conducted on the Alberta research farm site to monitor N2O emissions as they 

related to varying fertilization application rates throughout the 2023 and 2024 growing seasons for 

barley and wheat production. Three treatments of varying nitrogen (N) fertilizer rates were applied to 

the field crops (prescribed rate, +30%, -30%), along with a control treatment (no N fertilizer added). A 

long-term LI-COR trace gas analyzer measurement system was deployed in this field to obtain high 

temporal resolution measurements over the 2023 and 2024 growing seasons. The system was 

programmed to obtain two N2O readings per chamber every hour throughout each season (May to 

September).  

 

Figure 2. Comparison of emissions estimates between the Holos and Cool Farm Tool calculators and in-field 

measured emissions done using a LI-COR trace gas analyzer. 
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For this field site, all the associated on-farm management and inputs were recorded, including applied 

fertilizer, crop protection products (pesticides), desiccants, wet weight yield, and related field activities 

such as harvest and in-season operations. Moreover, environmental variables were recorded, including 

in-field weather station data, soil samples (suite of soil characteristics were assessed: nitrate, SOM, 

organic matter, etc.), and crop/grain samples throughout the season. We ran data associated with the 

fields of the farm where emissions were measured through the Holos and Cool Farm Tool calculators to 

get an estimate of emissions. The estimates were compared to measured emissions. Figure 2 shows the 

emissions estimates for the various calculators for four N treatments conducted in 2024. Comet Farm 

was excluded because it lacks required default values for regions outside of the USA.  

Given the heterogeneity of the calculators’ input requirements, potential reliance on default values, and 

varying methodologies to calculate emissions, we were not surprised to see differences in their resultant 

emission estimates. However, we are concerned with their poor representation of the measured 

emissions. While we have concerns about the generalizability of the measured emissions to other 

locations and cropping histories, this benchmarking underscored the over-reliance on default values 

when it comes to estimating emissions. Further, the calculators appeared to be more sensitive to 

changes in fertilizer use than any other variable, with Cool Farm Tool predicting essentially zero 

emissions for the control – no fertilizer – trial.  

Under different conditions, the measured emissions likely would have been different, for example if the 

farm had been in a different part of the world. But the great disparity highlights the need for more 

localized emissions models. Assuming that specific locations will be well-represented by regional 

averages may lead to an incorrect estimation of the sustainability potential of small-scale agriculture.  

This comparative work also showed that there is a greater need for improved usability. Simply entering 

the information into the Holos and Cool Farm Tool interfaces took around 5 person-hours per calculator. 

This entailed finding and extracting required data from farm management records, translating into the 

units required for the calculator, and looking up specific details when records were not sufficiently 

detailed (e.g. the brand of fertilizer was available but not the NPK ratio). Given researchers found the 

calculators challenging to use, calculators will need to be made more user-friendly to see widespread 

adoption by farmers. This is why efforts to incorporate calculators into existing farm management 

software are vital.  

 

Lessons and Recommendations 

The work described above established the following set of conclusions and recommendations for the 

second half of the project and our on-going work, and is likely to be informative for those that continue 

work on this project:   

♦ Collaboration is key: Measuring emissions is a notoriously difficult and complex task, but our 

work showed that isolated efforts created counterproductive systems. It was only through 

working with many stakeholders that we were able to make progress on advancing the adoption 

of emissions calculations. In the future, scientists, like those at the UBC Farm, will have to work 

with calculator users to identify the key relationships and align methodologies with what is 

practically changeable at the farm level where emissions calculators have the potential to inform 

decision making.  
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♦ Calculators must balance usability with accuracy: Calculators focusing on small-scale 

diversified farms should find a balance between accuracy and usability when deciding which 

inputs they require farmers to provide. In other words, there is a need to have a clear and 

manageable minimum data requirement for reliable measure of local emissions, and to test it 

out, there is a need to have access to on-farm emissions data from a range of small-scale 

diversified farms.  
♦ Diversified farms need a new kind of calculator: Our case study showed that at the very local 

level, and for small, diversified farms, the existing calculators do not accurately estimate 

emissions. Diversified farms have uniquely complex, historical, soil and metabolic processes that 

contribute to the difficulty of emissions estimation. Diversified farms will need new calculators 

that consider interactions in a novel way to accurately estimate their emissions.  

♦ Standardize methods but leverage flexibility for diverse users: Emissions calculators are 

becoming increasingly popular and accessible. However, the proliferation of calculators means 

each of them has different input requirements, employs varied and often opaque 

methodologies, and may depend on default values that do not represent a given farm. Thus, 

there is a need to harmonize information requirements across different calculators as well as 

other reporting requirements farmers face. Building a common framework that can be used to 

translate information of the same subject but in different forms will reduce administrative 

burdens and increase the flexibility of calculators without pushing the one-size-fits-all calculator.  

Some of these lessons informed us of our ongoing work, which we will describe in the next section.  

 

On-going work 

Common Farm Convention  

Given the complexity and variation in input requirements across GHG calculators, our team has focused 

on harmonizing these requirements by contributing to the development of the Common Farm 

Convention (CFC), which is a standardized, extensible data framework designed to coordinate GHG 

emissions modelling across agricultural tools. Developed by OurSci and initially based on the internal 

structure of the Cool Farm Tool (CFT), CFC formalizes a core set of variables, input hierarchies, and 

activity records to represent farm operations consistently across systems. This foundation supports 

interoperable modelling workflows in areas such as crop production, livestock management, and 

fertilizer use. 

The CFC framework is implemented as a set of machine-readable JSON schemas, making it both 

software-friendly and reusable. These schemas can be extended to form child conventions tailored to 

specific tools, systems, or organizational needs, such as the GHG modelling use case. Our team is 

actively collaborating with OurSci to create a GHG-specific child convention, where inputs from LiteFarm, 

an application designed to record farmers’ management practices, are mapped to CFC in alignment 

with Holos and CFT calculator structures. This enables seamless data transfer from input platforms like 

LiteFarm to various GHG models, eliminating redundant data entry and reducing user burden. 

Our team has already completed the integration of field-level crop management inputs from Holos into 

the CFC schema. This will soon be implemented in LiteFarm, positioning CFC as an interoperability 

backbone for Canadian and international users. Ultimately, this supports automated emissions reporting, 

https://gitlab.com/our-sci/conventions/common_farm_conventions
https://gitlab.com/our-sci/conventions/common_farm_conventions
https://www.our-sci.net/
https://baserow.f11804a1.federatedcomputer.net/public/grid/rNtF7cq2g_2P8p98dDEs50mtHDQ5iHA-ddK3f30qa94
https://baserow.f11804a1.federatedcomputer.net/public/grid/rNtF7cq2g_2P8p98dDEs50mtHDQ5iHA-ddK3f30qa94
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scenario analysis, and comparative assessments of farm-level mitigation strategies—driven by a single, 

unified dataset. 

 

Emissions Digest 

As clearly shown through our work, the emissions calculator landscape is complex and challenging to 

navigate.  Especially as measuring emissions in the agricultural sector becomes increasingly important 

for climate change mitigation strategies and necessary to facilitate the compensation of farmers’ efforts 

to reduce GHGs, resources that disseminate information surrounding emissions and the various tools 

that exist will be key in supporting farmers in making management decisions that reduce emissions.  

These resources must be accessible to farmers, conveying important information in a format that is useful 

given their limited time and demanding priorities.  To share some of the research and thinking our team 

has done throughout the project on these topics, we are preparing several research briefs (Appendix B) 

that break down information in a digestible format suited to farmers. Specifically, these briefs will focus 

on topics surrounding the connection between on-farm nitrogen use and GHG production, the 

importance of nitrogen use efficiency in relation to nitrogen loss mitigation, and the impacts of various 

management practices on the climate. 

 

Research Brief 1 

♦ This brief outlines the connections between on-farm nitrogen use, the climate, and a farmer’s 

economic bottom line, highlighting the negative impacts of overapplication.  

♦ To address these impacts, improving crop nitrogen use efficiency through 4R Nutrient 

Stewardship — Right source, Right rate, Right time, Right place — is suggested. 

♦ This suggestion aims to reduce greenhouse gas emissions associated with nitrogen application, 

while increasing farm profitability. 

 

Research Brief 2 

♦ This brief provides a detailed overview of the 4R Nutrient Stewardship approach, including 

specific examples and management practices that apply to diversified farms, specifically 

focusing on intensive vegetable production. 

♦ This brief also focuses on the direct connection between on-farm nitrogen use, the climate, and 

a farmer’s economic bottom line. 

 

Limitations  

We recognize several limitations in our work that are important to discuss: (a) we refrain from taking a 

position on the accuracy of any specific calculator, as our aim is not to advance emissions estimation but 

to simplify emissions calculators for farmers, making them easier to understand and use, and (b) this 

field is continually evolving, and tools along with their methodologies are likely to improve in response 

to the increasing demand for a sustainable food and economic system, and thus we caution readers to 

consider our work as an initial step in the exciting transformation of the agricultural sector. 
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Future of Work 

We envision this work to continue in the following directions, paving the way for estimating emissions in 

the sector at scale.  

1. Harmonization of various input requirements and the Emissions Digest provide the necessary 

path for the integration and use of existing emissions calculators into LiteFarm, a platform used 

by thousands of farms across the world, making emissions calculation easier for farmers.  

2. The existing models need rigorous testing and benchmarking from on-farm emissions as well as 

testing of their underlying theoretical models through simulated data. This exercise is key for all 

stakeholders to trust the estimates and use this as a part of their decision-making tool.  

3. While in this report we show relationship between one input use (fertilizer) and emissions, it 

would be key to empirically identify the impact of different management practices and input use 

on emissions using randomized-control trials and comparative statistics, as this will aid in 

identifying sustainable practices and input use.  

These developments can lead to measuring the emissions from the agricultural sector, after accounting 

for small-scale diversified farms, and would lay the path towards pricing emissions in this space.  
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Appendix 

A – Variable Selection Methodology Proposal 

Data for this project is sourced from several locations. Holos, Pyholos, LiteFarm, and the UBC Farm are the 
main sources used for this purpose. To supplement the data, Cool Farm and COMET Farm tools may also be 
utilized.  From each source, there are a variety of variables, some of which are common to several sources, 
and others which are unique to certain sources. The table below displays the variables which are being 
considered for this modeling work.  

Variable Holos PyHolos Cool 
Farm 

COMET 
Farm 

Emissions (response variable)     
GIS Coordinates, or Lat/Long x x  x 
Soil Texture   x  
Soil Organic matter   x  
Soil drainage   x  
Soil pH   x  
Crop x  x x 
Year x  x  
Planting Date x   x 
Harvesting Date x   x 
Total Area of the Field x    
Start year of Field History x    
Yield (wet weight) x   x 
Yield (dry weight) x   x 
Harvest amount   x  
Seed Amount     
Fertilizer Type   x x 
Manufactured   x  
Application Rate x  x  
Application Method x  x  
Date/Season of Application  x  x x 
Emissions inhibitor   x  
Blend x    
Total N Applied    x 
Seed Treatment - Type    x  
Seed Treatment - Application   x  
Seed Treatment - Active 
Ingredient (%) 

  x  

Organic - Amount Applied    x 
Organic - Date     x 
Organic - Amendment Type    x 
Organic - Fresh Weight Applied    x 
Organic - Total N Applied from 
Organic Amendment 

   x 

Organic - Motar ratio H: C    x 
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Organic - Feedstock    x 
Organic - Production Technology    x 
Field-Perennial/Grassland - 
Forage for seed 

x    

Field-Perennial/Grassland - 
Rangeland (native) 

x    

Field-Perennial/Grassland - 
Seeded grassland 

x    

Field-Perennial/Grassland - Tame 
grass 

x    

Field-Perennial/Grassland - Tame 
legume 

x    

Field-Perennial/Grassland - Tame 
mixed (grass/legume) 

x    

Field-Perennial/Grassland - 
Number of bales 

x    

Field-Perennial/Grassland - Wet 
Bale Weight 

x    

Field-Perennial/Grassland - 
Moisture Content 

x    

Shelterbelt - Year of Observation x    
Shelterbelt - Row Length x    
Shelterbelt - No. of Trees x    
Shelterbelt - Average 
Circumferences 

x    

Shelterbelt - Species x    
Energy - Source   x  
Energy - Used   x  
Energy - Category   x  
Energy - Label    x  
Energy - Field - Machine Category   x  
Energy - Field - Fuel Use   x  
Energy - Water - Waste Water 
Volume 

  x  

Energy - Water - Oxygen Demand   x  
Energy - Water - Oxygen Demand 
Type 

  x  

Energy - Water - Treatment 
Process 

  x  

Energy - Processing - Allocation   x  
Energy - Processing - Type    x  
Energy - Processing - Energy 
Source 

  x  

Energy - Processing - Label   x  
Energy - Storage - Percentage 
Stored 

  x  

Energy - Storage - Store loading   x  
Energy - Storage - Unloading   x  
Energy - Storage - Storage   x  
Energy - Storage - Time in Storage   x  
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Energy - Storage - Temperature 
Delta 

  x  

Energy - Storage - CIPC 
application 

  x  

Energy - Storage - CIPC dose   x  
Intensive Tillage x    
Reduced Tillage x    
No Tillage x    
Irrigation - Emissions based on 
volume 

  x  

Irrigation - Start week   x  
Irrigation - End week   x  
Irrigation - Method   x  
Irrigation - Water Source   x  
Irrigation - Pumping Depth   x  
Irrigation - Horizontal Distance   x  
Irrigation - Power Source   x  
Irrigation - Week number   x  
Irrigation - Units   x  
Irrigation - % of land irrigation   x  
Irrigation - litre/ha   x  
Irrigation - Use source and pump 
defaults 

  x  

Manure - Date x    
Manure - Type  x    
Manure - Origin x    
Manure - Handling System x    
Manure - Application Method x    
Manure - Amount x    
Residue Management   x  
Carbon (in crop biomass) - Year 
of Change 

  x  

Carbon (in crop biomass) - 
Allocation 

  x  

Carbon (in crop biomass)  - Land 
Use 

  x  

Carbon (in crop biomass)  - 
Tillage 

  x  

Carbon (in crop biomass) - 
Carbon inputs 

  x  

Carbon (in crop biomass) - Tree 
species 

  x  

Carbon (in crop biomass) - 
Density Last Year 

  x  

Carbon (in crop biomass) - Size 
Last Year 

  x  

Carbon (in crop biomass) - Size 
this Year 

  x  

Carbon (in crop biomass) - Trees 
planted/lost 

  x  
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Grazing - Start Date    x 
Grazing - End Date    x 
Grazing - Daily Utilization    x 
Grazing - Rest Days    x 
Grazing - Source of bales x    
Grazing - Field x    
Grazing - Number of Bales x    
Grazing - Wet Bale Weight x    
Liming - Material    x 
Liming - Date of Application    x 
Liming - Amount Applied    x 
Transport - Mode   x  
Transport - Weight   x  
Transport - Distance   x  
Transport - Label    x  

 

Full metadata table located here: https://ubcca.sharepoint.com/:x:/r/teams/ubcLFS-gr-
Agroecology4Climate/_layouts/15/Doc2.aspx?action=edit&sourcedoc=%7Ba5a2fae2-7170-48fc-b938-
7857c2610e0a%7D&wdOrigin=TEAMS-WEB.teamsSdk_ns.rwc&wdExp=TEAMS-
TREATMENT&wdhostclicktime=1733192667674&web=1 

 

Currently the variables above are required in different amounts in each source. Cool Farm requires 66 of the 
total 118 variables (excluding the response variable which is only present for LiteFarm/UBC Farm). COMET 
Farm requires 24, and HOLOS 24 of the listed variables. 

Count of Cool 
Farm  

Count of COMET 
Farm  

Count of 
Holos  

Count of 
PyHolos  

66 24 40 1 

 

The proposed methodology and data analysis are based upon collecting empirical data and not from running 
the models (Holos, Comet, etc.). In the work contained in this report, we had various models available, and 
the equations contained within them (in the case of Holos), and a small amount of empirical data. Given that 
features of interest are variable between the models available, it is proposed that the data analysis consist of 
several components; 1) Unsupervised clustering to investigate any associations within the data or distinct 
groupings, 2) Principal Component Analysis (PCA) or other variable selection techniques to observe which 
variables are influencing the principal components for explaining GHG emissions measurements, 3) Linear 
Model built using information from the PCA and backwards selection.  

1) Clustering 

Unlike many other statistical methods, cluster analysis is typically used when there is no assumption made 
about the likely relationships within the data. It provides information about where associations and patterns 
in data exist, but not what those might be or what they mean. Several methods of determining the optimal 
number of clusters can be used: Gap Statistic method, Elbow method, Silhouette method, and the NbClust R 
package method.  The clustering algorithm in R cannot handle missing values. Rows which have at least one 
missing value should be dropped.  

https://ubcca.sharepoint.com/:x:/r/teams/ubcLFS-gr-Agroecology4Climate/_layouts/15/Doc2.aspx?action=edit&sourcedoc=%7Ba5a2fae2-7170-48fc-b938-7857c2610e0a%7D&wdOrigin=TEAMS-WEB.teamsSdk_ns.rwc&wdExp=TEAMS-TREATMENT&wdhostclicktime=1733192667674&web=1
https://ubcca.sharepoint.com/:x:/r/teams/ubcLFS-gr-Agroecology4Climate/_layouts/15/Doc2.aspx?action=edit&sourcedoc=%7Ba5a2fae2-7170-48fc-b938-7857c2610e0a%7D&wdOrigin=TEAMS-WEB.teamsSdk_ns.rwc&wdExp=TEAMS-TREATMENT&wdhostclicktime=1733192667674&web=1
https://ubcca.sharepoint.com/:x:/r/teams/ubcLFS-gr-Agroecology4Climate/_layouts/15/Doc2.aspx?action=edit&sourcedoc=%7Ba5a2fae2-7170-48fc-b938-7857c2610e0a%7D&wdOrigin=TEAMS-WEB.teamsSdk_ns.rwc&wdExp=TEAMS-TREATMENT&wdhostclicktime=1733192667674&web=1
https://ubcca.sharepoint.com/:x:/r/teams/ubcLFS-gr-Agroecology4Climate/_layouts/15/Doc2.aspx?action=edit&sourcedoc=%7Ba5a2fae2-7170-48fc-b938-7857c2610e0a%7D&wdOrigin=TEAMS-WEB.teamsSdk_ns.rwc&wdExp=TEAMS-TREATMENT&wdhostclicktime=1733192667674&web=1
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Examples of clustering output. The optimal number of clusters recommended is 2 from NbClust output (left hand side), 
clustering visualization of k-means clustering, using k = 2. 

2) Principal Components Analysis 

PCA is a statistical method that transforms high-dimensional data into a lower-dimensional form while 
preserving the most important information. It accomplishes this by identifying new axes, called principal 
components, along with which the data varies the most. These components are orthogonal to each other, 
meaning they are uncorrelated, making them a powerful tool for dimensionality reduction. PCA analysis can 
be completed in R using the ‘FactoMineR’ package, separately for each cluster, if clustering is deemed to be 
beneficial/valuable for the analysis. PCA is typically done for numerical variables only, however the package 
‘PCAmixdata’ can be used in addition because it allows for the PCA to account for categorical variables, 
which are important in the dataset. The PCA analysis provides a scree plot (plot showing how many PC 
dimensions are required to explain a certain amount of variability in the data, plots demonstrating the 
variables which are contributing to the top 2 PCs, and a biplot of the top 2 PCs. Considering how categorical 
variables may significantly contribute to the PCA analysis, it should be checked appropriately. 

 

3. Linear Model Building 

A correlation plot is checked to see if/which variables were highly correlated and based on the insight gained 
from the PCA analysis. If necessary, some variables are removed from the data for the modelling portion of 
the project. The variables that remain are considered for modeling due to their relevance to PC 1 and 2. Other 
variables may be removed due to correlation, or due to professional opinion from members of the research 
team. The following assumptions of linear regression should be checked, making sure that no violations are 
found (diagnostic graphs are checked).  

• Predictor variables must have a linear relationship with the response variable. 
• Predictor variables are not highly correlated with one another.  
• Outliers and influential points are identified and removed if needed. 
• Homoscedasticity and normality of the residuals is met. 

4. Validation 
When building the linear model, a portion of the data will be withheld and used for validation purposes. To 
ensure that the model predicts well on new data, we need to use data that isn’t used in the training process. 
A simple method is to split (80:20) the dataset into two sets: train set (80% for training) and test set (20% for 
model evaluation) before training the model.  
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B – Research Briefs 

Improving the Bottom Line Through Climate Friendly Nitrogen Application 

 

The Scoop on Using Nitrogen  
Nitrogen (N) is an essential macronutrient needed for 
plant growth and development.  Nitrogen from 
fertilizers, composts, animal manures or plant 
residues provides nutrients that may not be readily 
available in soil, often increasing yield and farm 
profitability (Figure 1). Despite over 50 years of 
agricultural research to improve the use of N, globally 
crops typically utilize 50-80% of the N that farmers 
apply, with the rest lost via microbe consumption, 
leaching, runoff, or off-gassing.  It is challenging to 
synchronize the uptake of N in its plant-available form 
when and where the crops need it.  The overapplication of N increases financial costs, degrades 
soil, water, and air quality, and acts as a significant source of agricultural greenhouse gas (GHG) 
emissions.  Improving the efficiency of N fertilizers by utilizing management practices that 
maximize N uptake by the crop and minimize the loss of N from agricultural lands can benefit the 
farm’s bottom line, while helping the environment. 

 

What is Nitrogen Use Efficiency? 
Nitrogen use efficiency (NUE) estimates how much of the applied N actually contributes to crop 
production.  Low NUE values often indicate inefficient plant uptake, while very high NUE suggests 
plants are depleting soil N.  NUE estimates are based on ratios of N content of the source applied, 
the nutrient needs of the crop, and soil characteristics.  Strategies to calculate NUE can range from 
very complex, requiring multiple analyses of the crop and soil throughout the production season, to 
a simple estimation of the ratio of crop yield to the amount of N applied.  NUE is also influenced by 
the form of N that is applied, the location, the timing, environmental factors, plant physiology, and 
soil biochemical processes.  Crops mainly take up mineral forms of N, ammonium (NH4), and 
nitrate (NO3) — together we can refer to these as plant available nitrogen (PAN). Fertilizers 
containing N can be derived from rocks/minerals or synthetically manufactured through industrial 
processes or chemical reactions and are rapidly released after application as PAN.  Alternatively, N 
applied through compost, animal manure, and plant residues tend to release PAN slowly as they 
decompose.  Effectively improving NUE requires planning for the location and timing of the release 
of PAN, ideally accounting for all its sources. 

Figure 1. Manure spreading in for potato 
production (photo credit: S. Smukler) 
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How is Nitrogen Lost to 
the Environment? 
When N is applied to soil, 
regardless of its source, it is 
susceptible to losses to the 
environment (Figure 2). These 
losses are generally controlled by 
microbial activity and 
environmental conditions that 
affect them, such as temperature 
and moisture.  N that is applied 
without soil incorporation is 
especially prone to being lost.  N 
in all its forms is susceptible to 
surface runoff through erosion 

and leaching, which can contaminate groundwater, particularly as NO3, which is water soluble.  
Additionally, N can be transformed to NH4 which is then lost through volatilization of ammonia 
(NH3) gas. As N is transformed through nitrification from NH4 to NO3, it is lost to the atmosphere. 
NO3 can then be converted into N2O and nitrogen gas (N2). Critically, N2O is a GHG 273 times as 
powerful as carbon dioxide and is one of the primary sources of emissions from agriculture, 
highlighting its impact on the climate system. 

 

Improving NUE and Results through 4R Nitrogen Management 

Improving NUE can help mitigate N loss and increase crop yields and profits, as NUE is directly 
linked to the conversion of available N into plant biomass.  This can be done by using a 4R Nutrient 
Stewardship approach: Right source, Right rate, Right time, Right place (see 4R Nutrient 
Stewardship to Reduce Nitrogen Use and Greenhouse Gas Emissions, While Improving Farm 
Profitability for details).  Using the 4R approach has been shown to increase NUE across a wide 
range of agricultural systems. In a study evaluating NUE on a national scale across the United 
States, researchers found that a simulated 20% increase in NUE would result in an increase in 
farmer profits of 1.6% per year. Considering a sizable amount of applied N is lost to the 
environment, reducing initial application rate is economically beneficial as well.  In a study based 
in Ontario, researchers used a representative corn farm model to calculate that reducing the N 
application rate from 170 to 150 kg N ha-1 would result in an increase in net return of $22.32–
$36.25 ha-1yr-1.   

 

Key Takeaways 
On both a global and local scale, farmers are currently overapplying N.  This overapplication not 
only affects a farm’s bottom line but also has impacts on the environment and climate.  To address 
these issues, efforts should concentrate on improving NUE, which will simultaneously increase 
farm profitability and reduce agricultural GHG emissions. 

Figure 2. Diagram showing the most common pathways where nitrogen is lost to 
the environment. 
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4R Nutrient Stewardship to Reduce Nitrogen Use and Greenhouse Gas 
Emissions, While Improving Farm Profitability 

The 4R Nutrient Stewardship framework — Right source, Right rate, Right time, and Right place — 
provides an approach to improving nitrogen use efficiency (NUE) while optimizing yield and 
minimizing environmental impacts.  By minimizing nitrogen (N) losses, it also serves as an effective 
emissions reduction strategy; in Canada, widespread adoption of these practices could reduce 
GHG emissions by 6.3 million Tonnes of CO2 equivalents annually by 2030, contributing 3% toward 
the national Paris Accord target.  While applicable across diverse agricultural settings, this brief 
focuses on implementing the 4R’s in intensive vegetable production systems, where 
overapplication and N loss are common owing to shallow-rooted crops, high N demand over short 
periods, and frequent irrigation, which can contribute to significant nitrate (NO3

-) leaching.  Further 
contributing to these issues, limited data on nutrient application rates reduces capacity to make 
informed recommendations that maximize yields, while minimizing environmental losses.  For 
these reasons, 4R Nutrient Stewardship is a key approach for minimizing N loss to improve farm 
profitability and mitigate GHG emissions. 

Choosing the right nutrient sources is essential to: (1) ensure N is in 
plant-available forms, (2) match crop nutrient requirements, and 
(3) complement existing nutrient sources.  Organic sources, like 
manures, plant residues, and compost, release nutrients slowly; 
waste products like manure are typically inexpensive and may also 
help lower costs.  Incorporating leguminous cover crops (clover, 
peas, etc.) enhances biological N fixation, builds organic matter 
content, and promotes microbial communities.  Cover crops also 
reduce erosion and nutrient leaching, all of which can contribute to 
the improvement of NUE.  This can be directly translated into 
increased yields, as seen in a multi-year processing tomato study 
based in Ontario.  Plots with cover crops consistently 

outperformed bare control plots in yield, with partial profit margins up to $1,320/ha with oilseed 
radish and $960/ha with oats.  Growing leguminous cash crops (lentils, chickpeas, etc.) or forage 
crops (alfalfa, vetch, etc.) can also achieve these outcomes, while acting as a source of profit.  
Alternatively, investing in nitrification inhibitors or slow-release fertilizers can improve NUE, while 
reducing N2O emissions by 20-40% per unit of N applied. 

 

Optimizing nutrient application rates through nutrient management 
planning helps prevent overuse, reduce environmental harm, and 
sustain or improve yields.  Effective planning aligns application 
rates with crop requirements and accounts for existing nutrient 
sources, including those from previous crop residues.  On top of 
this, timely, affordable, and accurate nutrient testing, especially 
annual soil tests, is key to informed decision-making and avoiding 
overapplication.  In cucurbits, for example, excess N can promote 
vegetative growth at the expense of fruit development, reducing 
marketable yield.  A multi-site study on butternut squash in 

southwestern Ontario found that at 64% of field sites, the provincially recommended N rates 
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were unnecessarily high – failing to improve yields and adding avoidable input costs.  Similar 
results were found in a study conducted in the Lower Mainland of British Columbia on potato 
production, where a cost-benefit analysis reported that the increase in yield from 90 to 120 kg 
N ha-1 did not significantly outweigh the additional fertilizer costs.  However, in this case, 
provincial guidelines of 70 kg N ha-1 are often surpassed by farmers in the area, with application 
rates reported as high as 112 kg N ha-1.  These results underscore the economic and agronomic 
importance of adjusting fertilizer rates to actual crop and soil conditions prior to application to 
avoid waste, additional costs, and in some cases, yield penalties.  Without this information, 
growers are likely to overapply N to combat the risks of lower yield. 

 

Timing N applications to align with crop demands over the growing 
season reduces N losses and maximizes uptake, improving NUE.  
Utilizing tools, like sensors, field observations, tissue testing, and 
forecasting models can facilitate dynamic responses to weather 
and guide split applications to better align with plant needs.  In a 
modeling study focused on corn in Ontario, findings suggested that 
split N application with rate adjustments may increase profits 
between 15-19% in dry conditions and between 1-15% in wet 
conditions, while reducing nitrate leaching and indirect N2O 
emissions.   

 

Nutrient placement affects both crop uptake and N losses. 
Applying N near the root zone during key growth stages—through 
incorporation, injection, banding, or side-dressing—can enhance 
NUE and reduce volatilization and leaching. However, these 
methods have trade-offs: surface-applications increase NH₃ 
volatilization and indirect N2O emissions, while injection may raise 
direct N2O emissions by creating denitrification hotspots.  
Subsurface placement is often recommended, but its impact on 
emissions is uncertain.  As such, investing in new systems may not 
be cost-effective if farms have suitable application methods. 
Instead, focusing on localized placement, like shallow 

incorporation or banding near the root zone, can improve NUE while minimizing emissions. 

 

Key Takeaways 

Considering the climate impacts of on-farm N application and that nutrient amendments are a 
measurable input by farmers, targeting N through 4R Stewardship is an effective strategy to reduce 
GHG emissions, while improving a farm’s financial bottom line. 
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